Impact of metal oxide nanoparticles on unsteady stagnation point flow of the hybrid base fluid along a flat surface

Abstract

This paper deals with a detailed investigation of the effects of various metal oxide nanoparticles on unsteady stagnation point flow of a hybrid base fluid impinging on a flat surface. The ‘single-phase’ nanofluid model, i.e., the Tiwari and Das model, is considered for the study. We consider water and ethylene glycol in 1:1 ratio as the base fluid and four different types of metal oxides, namely, CuO, TiO\(_{\mathrm {2}}\), ZnO and MgO as the nanoparticles. Using similarity transformations, the conservation equations are transformed into self-similar ordinary differential equations. Dual and unique similarity solutions are obtained for certain set of values of parameters. The analysis explores many important findings. Dual self-similar solutions exist up to a certain critical value of the decelerating unsteady parameter and the critical value is independent of the type of metal oxide nanoparticles considered. The strongest surface drag force is observed for the nanofluid with CuO nanoparticles, while the weakest is for the nanofluid with MgO nanoparticles. The heat transfer rate is highest for the nanofluid with CuO nanoparticles and lowest for the nanofluid with TiO\(_{\mathrm {2}}\) nanoparticles. Also, the boundary layer is thickest for the nanofluid with MgO nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    S U S Choi, Developments and applications of non-Newtonian flows edited by D A Siginer and H P Wang (ASME, New York, 1995) Vol. 66, pp. 99–105

  2. 2.

    S Lee, S U S Choi, S Li and J A Eastman, ASME J. Heat Transf. 121, 280 (1999)

    Article  Google Scholar 

  3. 3.

    H U Kang, S H Kim and J M Oh, Exp. Heat Transf. 19, 181 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    J Buongiorno, ASME J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  5. 5.

    R K Tiwari and M K Das, Int. J. Heat Mass Transf. 50, 2002 (2007)

    Article  Google Scholar 

  6. 6.

    A Ebrahimi, F Rikhtegar, A Sabaghan and E Roohi, Energy 101, 190 (2006)

    Article  Google Scholar 

  7. 7.

    C Pang, J Y Jung and Y T Kang, Int. J. Heat Mass Transf. 72, 392 (2014)

    Article  Google Scholar 

  8. 8.

    E Firouzfar, M Soltanieh, S H Noie and S H Saidi, Appl. Therm. Eng. 31, 1543 (2011)

    Article  Google Scholar 

  9. 9.

    E C Wang and A Z Wang, Integr. Biol. (Camb.) 6, 9 (2014)

    Article  Google Scholar 

  10. 10.

    M S Patil, S C Kin, J-H Seo and M-Y Lee, Energies 9, 22 (2016)

    Article  Google Scholar 

  11. 11.

    N A Che Sidik, N G Y Cheong and A Fazeli, Appl. Mech. Mater. 695, 539 (2015)

    Article  Google Scholar 

  12. 12.

    E Abu-Nada and H F Oztop, Numer. Heat Transf. Part A: Appl. 59, 403 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    M Sheikholeslami and D D Ganji, J. Braz. Soc. Mech. Sci. Eng. 37, 895 (2015)

    Article  Google Scholar 

  14. 14.

    A Malvandi and D D Ganji, J. Magn. Magn. Mater. 362, 172 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    R Ahmed and M Mustafa, J. Mol. Liq. 220, 635 (2016)

    Article  Google Scholar 

  16. 16.

    Kh Hosseinzadeh, A J Amiri, S S Ardahaie and D D Ganji, Case Stud. Therm. Eng. 10, 595 (2017)

    Article  Google Scholar 

  17. 17.

    R Derakhshan, A Shojaei, Kh Hosseinzadeh, M Nimafar and D D Ganji, Case Stud. Therm. Eng. 14, 100439 (2019)

    Article  Google Scholar 

  18. 18.

    M R Zangooee, Kh Hosseinzadeh and D D Ganji, Case Stud. Therm. Eng. 14, 100460 (2019)

    Article  Google Scholar 

  19. 19.

    Kh Hosseinzadeh, A Asadi, A R Mogharrebi, J Khalesi, S Mousavisani and D D Ganji, Case Stud. Therm. Eng. 14, 100482 (2019)

    Article  Google Scholar 

  20. 20.

    Kh Hosseinzadeh, M Gholinia, B Jafari, A Ghanbarpour, H Olfian and D D Ganji, Heat Transf. Asian Res. 48(2), 744 (2019)

    Article  Google Scholar 

  21. 21.

    M Gholinia, Kh Hosseinzadeh, H Mehrzadi, D D Ganji and A A Ranjbar, Case Stud. Therm. Eng. 13, 100356 (2019)

    Article  Google Scholar 

  22. 22.

    M Khan, M Irfan and W A Khan, Pramana – J. Phys. 92: 17 (2019)

    ADS  Article  Google Scholar 

  23. 23.

    S Ghosh and S Mukhopadhyay, Pramana – J. Phys. 92: 93 (2019)

    ADS  Article  Google Scholar 

  24. 24.

    A Shojaei, A J Amiri, S S Ardahaie, Kh Hosseinzadeh and D D Ganji, Case Stud. Therm. Eng. 13, 100384 (2019)

    Article  Google Scholar 

  25. 25.

    M I Khan, S Qayyum, S Farooq, T Hayat and A Alsaedi, Pramana – J. Phys. 93: 62 (2019)

    ADS  Article  Google Scholar 

  26. 26.

    Kh Hosseinzadeh, A R Mogharrebi, A Asadi, M Paikar and D D Ganji, J. Mol. Liq. 300, 112347 (2020)

    Article  Google Scholar 

  27. 27.

    S Ghosh and S Mukhopadhyay, Pramana – J. Phys. 94: 61 (2020)

    ADS  Article  Google Scholar 

  28. 28.

    A K Gautam, A K Verma, K Bhattacharyya and A Banerjee, Pramana – J. Phys. 94: 108 (2020)

    ADS  Article  Google Scholar 

  29. 29.

    Kh Hosseinzadeh, A Asadi, A R Mogharrebi, M E Azari and D D Ganji, J Therm. Anal. Calorim. (2020), https://doi.org/10.1007/s10973-020-09347-x

  30. 30.

    N Bachok, A Ishak and I Pop, Boundary Value Prob. 39, 13 (2013)

    Google Scholar 

  31. 31.

    K Bhattacharyya, Ain Shams Eng. J. 4, 259 (2013)

    Article  Google Scholar 

  32. 32.

    N C Peddisetty, Pramana – J. Phys. 87: 62 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    S S Ghadikolaei, M Yassari, H Sadeghi, Kh Hosseinzadeh and D D Ganji, Powder Technol. 322, 428 (2017)

    Article  Google Scholar 

  34. 34.

    A Akhgar and D Toghraie, Powder Technol. 338, 806 (2018)

    Article  Google Scholar 

  35. 35.

    M A Esfahani and D Toghraie, J. Mol. Liq. 232, 105 (2017)

    Article  Google Scholar 

  36. 36.

    M S Uddin, A Zaib and K Bhattacharyya, J. Appl. Mech. Tech. Phys. 58, 670 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    M Sheikholeslami and D D Ganji, Int. J. Hydrogen Energy 42, 2748 (2017)

    Article  Google Scholar 

  38. 38.

    M Gholinia, S Gholinia, Kh Hosseinzadeh and D D Ganji, Res. Phys. 9, 1525 (2018)

    Google Scholar 

  39. 39.

    S S Ghadikolaei, Kh Hosseinzadeh and D D Ganji, World J. Eng. 16(1), 51 (2019)

    Article  Google Scholar 

  40. 40.

    N Bachok, A Ishak and I Pop, Int. J. Heat Mass Transf. 55, 6499 (2012)

    Article  Google Scholar 

  41. 41.

    P D Weidman, D G Kubitschek and A M J Davis, Int. J. Eng. Sci. 44, 730 (2006)

    Article  Google Scholar 

  42. 42.

    S A Bakar, N M Arifin, F M Ali, N Bachok and R Nazar, J. Phys. Conf. Ser. 890, 012041 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The works of A K Pandey (09/013(0742)/2018-EMR-I) and S Rajput (09/013(0843)/2018-EMR-I) are supported by the Council of Scientific and Industrial Research, New Delhi, Ministry of Human Resources Development of India Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Bhattacharyya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Rajput, S., Bhattacharyya, K. et al. Impact of metal oxide nanoparticles on unsteady stagnation point flow of the hybrid base fluid along a flat surface. Pramana - J Phys 95, 5 (2021). https://doi.org/10.1007/s12043-020-02029-1

Download citation

Keywords

  • Metal oxide nanoparticles
  • hybrid base fluid
  • dual solutions
  • stability analysis
  • unsteady stagnation-point flow

PACS Nos

  • 47.15.Cb
  • 47.15.Fe
  • 47.61.−k