Amorphisation of boron carbide under gamma irradiation

Abstract

Boron carbide (\(\hbox {B}_{\mathrm {4}}\hbox {C}\)) has been widely used in nuclear reactors and nuclear applications. In this work, the high-purity (99.9%) \(\hbox {B}_{\mathrm {4}}\hbox {C}\) samples were irradiated using a gamma source (\(^{\mathrm {60}}\hbox {Co}\)) with a dose rate (D) of 0.27 Gy/s at different gamma irradiation doses at room temperature. Phase and microstructural characterisation of \(\hbox {B}_{\mathrm {4}}\hbox {C}\) samples were carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results displayed some degradation of the diffraction peaks. The calculations reveal that 62% of \(\hbox {B}_{\mathrm {4}}\hbox {C}\) has changed into the amorphous phase when the irradiation dose is 194.4 kGy. Fourier transform infrared spectroscopy (FTIR) was used to explain chemical bonds and functional groups of \(\hbox {B}_{\mathrm {4}}\hbox {C}\) samples before and after gamma irradiation. The results showed that C–C chemical bonds are weaker than B–C chemical bonds and tend to break under gamma irradiation. Element mapping analysis for each gamma irradiation dose of \(\hbox {B}_{\mathrm {4}}\hbox {C}\) samples was performed using SEM patterns. The dynamics of the elements on the surface and chemical formula of all \(\hbox {B}_{\mathrm {4}}\hbox {C}\) samples were also determined after gamma irradiation.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    S Corradetti, S Carturan, L Biasetto, A Andrighetto and P Colombo, J. Nucl. Mater. (2013), https://doi.org/10.1016/j.jnucmat.2012.08.024

    Article  Google Scholar 

  2. 2.

    M Steinbrück, J. Nucl. Mater. (2005), https://doi.org/10.1016/j.jnucmat.2004.09.022

  3. 3.

    M K Aghajanian, B N Morgan, J R Singh, J Mears and R A Wolffe, Ceram. Trans. 134, 527 (2002)

  4. 4.

    M Shahedi Asl, M Ghassemi Kakroudi and B Nayebi, Ceram. Int. (2015), https://doi.org/10.1016/j.ceramint.2014.08.081

  5. 5.

    D Mallick et al, Ceram. Int. (2009), https://doi.org/10.1016/j.ceramint.2008.07.015

    Article  Google Scholar 

  6. 6.

    C García-Rosales, E Gauthier, J Roth, R Schwörer and W Eckstein, J. Nucl. Mater. (1992) https://doi.org/10.1016/0022-3115(92)90413-F

    Article  Google Scholar 

  7. 7.

    B Albert and H Hillebrecht, Ang. Chem. Int. Ed. (2009), https://doi.org/10.1002/anie.200903246

    Article  Google Scholar 

  8. 8.

    T Mori, JOM (2016), https://doi.org/10.1007/s11837-016-2069-9

    Article  Google Scholar 

  9. 9.

    T Mori and T Nishimura, J. Solid State Chem. (2006), https://doi.org/10.1016/j.jssc.2006.03.030

    Article  Google Scholar 

  10. 10.

    J R Weeks, Nucl. Sci. Eng. (2017), https://doi.org/10.13182/nse63-a26270

    Article  Google Scholar 

  11. 11.

    V Domnich, S Reynaud, R A Habe and M Chhowalla, J. Am. Ceram. Soc. (2011), https://doi.org/10.1111/j.1551-2916.2011.04865.x

    Article  Google Scholar 

  12. 12.

    M M Balakrishnarajan, P D Pancharatna and R Hoffmann, New J. Chem. (2007), https://doi.org/10.1039/b618493f

    Article  Google Scholar 

  13. 13.

    L Desgranges et al, Nucl. Instrum. Meth. B (2018), https://doi.org/10.1016/j.nimb.2018.07.011

    Article  Google Scholar 

  14. 14.

    W A Gooch, An overview of ceramic armor applications, 6th Technical conference (Trencin Slovakia, 2004)

  15. 15.

    D S McGregor, R T Klann, H K Gersch and J D Sanders, IEEE Nucl. Sci. Symp. Med. Imaging Conf. (2002), https://doi.org/10.1109/NSSMIC.2001.1009315

    Article  Google Scholar 

  16. 16.

    D S McGregor, R T Klann, H K Gersch and Y H Yang, Nucl. Instrum. Meth. Phys. Res. A (2001), https://doi.org/10.1016/S0168-9002(01)00835-X

    Article  Google Scholar 

  17. 17.

    T L Aselage, S S McCready and D Emin, Phys. Rev. B (2001), https://doi.org/10.1103/PhysRevB.64.054302

    Article  Google Scholar 

  18. 18.

    F W Glaser, D Moskowitz and B Post, J. Appl. Phys. (1953), https://doi.org/10.1063/1.1721367

    Article  Google Scholar 

  19. 19.

    S K Singh, M Neek-Amal, S Costamagna and F M Peeters, Phys. Rev. B (2013), https://doi.org/10.1103/PhysRevB.87.184106

    Article  Google Scholar 

  20. 20.

    E A Ekimov, V A Sidorov, N N Mel’nik, S Gierlotka and A Presz, J. Mater. Sci. (2004), https://doi.org/10.1023/b:jmsc.0000035345.99616.24

    Article  Google Scholar 

  21. 21.

    F Thévenot, J. Eur. Ceram. Soc. (1990), https://doi.org/10.1016/0955-2219(90)90048-K

    Article  Google Scholar 

  22. 22.

    T Wang and A Yamaguchi, J. Mater. Sci. Lett. (2000), https://doi.org/10.1023/A:1006791004355

    Article  Google Scholar 

  23. 23.

    H E Çamurlu, N Sevinç and Y Topkaya, J. Mater. Sci. (2006), https://doi.org/10.1007/s10853-006-0339-6

    Article  Google Scholar 

  24. 24.

    K Rasim et al, Angew. Chem. Int. Ed. (2018), https://doi.org/10.1002/anie.201800804

    Article  Google Scholar 

  25. 25.

    J O Stiegler and L K Mansur, Annu. Rev. Mater. Sci. (2003), https://doi.org/10.1146/annurev.ms.09.080179.002201

    Article  Google Scholar 

  26. 26.

    D Gosset, S Miro, S Doriot and N Moncoffre, J. Nucl. Mater. (2016), https://doi.org/10.1016/j.jnucmat.2016.04.030

    Article  Google Scholar 

  27. 27.

    D Gosset, S Miro, S Doriot, G Victor and V Motte, Nucl. Instrum. Meth. Phys. Res. B (2015), https://doi.org/10.1016/j.nimb.2015.07.054

    Article  Google Scholar 

  28. 28.

    R E Stoller et al, Nucl. Instrum. Meth. Phys. Res. B (2013), https://doi.org/10.1016/j.nimb.2013.05.008

    Article  Google Scholar 

  29. 29.

    G Victor et al, Nucl. Instrum. Meth. Phys. Res. B (2015), https://doi.org/10.1016/j.nimb.2015.07.082

    Article  Google Scholar 

  30. 30.

    X Cao et al, Ceram. Int. (2015), https://doi.org/10.1016/j.ceramint.2014.09.111

    Article  Google Scholar 

  31. 31.

    S Wu, L Cheng, L Zhang and Y Xu, Surf. Coatings Technol. (2006), https://doi.org/10.1016/j.surfcoat.2005.03.009

    Article  Google Scholar 

  32. 32.

    K Schnarr and H Münzel, J. Nucl. Mater. (1990), https://doi.org/10.1016/0022-3115(90)90296-Y

    Article  Google Scholar 

  33. 33.

    A H Silver and P J Bray, J. Chem. Phys. (1958), https://doi.org/10.1063/1.1744697

    Article  Google Scholar 

  34. 34.

    M Carrard, D Emin and L Zuppiroli, Phys. Rev. B (1995), https://doi.org/10.1103/PhysRevB.51.11270

    Article  Google Scholar 

  35. 35.

    D Emin, J. Solid State Chem. (2006), https://doi.org/10.1016/j.jssc.2006.01.014

    Article  Google Scholar 

  36. 36.

    V Heera et al, Appl. Phys. Lett. (1997), https://doi.org/10.1063/1.119223

    Article  Google Scholar 

  37. 37.

    D J Sprouster et al, Phys. Rev. B (2010), https://doi.org/10.1103/PhysRevB.81.155414

    Article  Google Scholar 

  38. 38.

    H Inui, H Mori and H Fujita, Philos. Mag. B (1990), https://doi.org/10.1080/13642819008208655

    Article  Google Scholar 

  39. 39.

    T Stoto, N Housseau, L Zuppiroli and B Kryger, J. Appl. Phys. (1990), https://doi.org/10.1063/1.346370

    Article  Google Scholar 

  40. 40.

    E A Kotomin and A I Popov, Nucl. Instrum. Meth. Phys. Res. B (1998), https://doi.org/10.1016/S0168-583X(98)00079-2

    Article  Google Scholar 

  41. 41.

    W J Weber, L M Wang, N Yu and N J Hess, Mater. Sci. Eng. A (1998), https://doi.org/10.1016/s0921-5093(98)00710-2

    Article  Google Scholar 

  42. 42.

    M N Mirzayev et al, J. Alloys Compd. (2019), https://doi.org/10.1016/j.jallcom.2019.06.135

    Article  Google Scholar 

  43. 43.

    M Mirzayev et al, Int. J. Mod. Phys. B 33, 1950073 (2019)

    ADS  Article  Google Scholar 

  44. 44.

    M N Mirzayev, R N Mehdiyeva, Kh F Mammadov, S H Jabarov and E B Asgerov, Phys. Part. Nucl. Lett. 15, 673 (2018)

    Article  Google Scholar 

  45. 45.

    M N Mirzayev, S H Jabarov, E B Asgerov, R N Mehdiyeva, T T Thabethe, S Biira and N V Tiep, Results Phys. 10, 541 (2018)

  46. 46.

    M N Mirzayev, K F Mammadov, R G Garibov and E B Askerov, High Temp. 56, 374 (2018)

    Article  Google Scholar 

  47. 47.

    J Rodriguez-Carvajal, Physica B 192, 55 (1993)

    ADS  Article  Google Scholar 

  48. 48.

    F Heidelbach, C Riekel and H R Wenk, J. Appl. Crystallogr. (1999), https://doi.org/10.1107/S0021889899004999

    Article  Google Scholar 

  49. 49.

    M N Mirzayev, R N Mehdiyeva, R G Garibov, N A Ismayilova and S Jabarov, Mod. Phys. Lett. B 32, 1850151 (2018)

    ADS  Article  Google Scholar 

  50. 50.

    J Als-Nielsen and Des McMorrow, Elements of modern X-ray physics 2nd edn (John Wiley & Sons, 2011), https://doi.org/10.1002/9781119998365

  51. 51.

    A Mishra, R K Sahoo, S K Singh and B K Mishra, J. Asian Ceram. Soc. (2015), https://doi.org/10.1016/j.jascer.2015.08.004

    Article  Google Scholar 

  52. 52.

    S A Khorrami et al, J. Appl. Chem. Res. 10(4), 7 (2016)

    Google Scholar 

  53. 53.

    Q J Guo et al, AIP Adv. (2018), https://doi.org/10.1063/1.5011782

    Article  Google Scholar 

  54. 54.

    J Romanos et al, Carbon (2013), https://doi.org/10.1016/j.carbon.2012.11.031

    Article  Google Scholar 

  55. 55.

    D Xu et al, Nucl. Instrum. Meth. Phys. Res. B (1993), https://doi.org/10.1016/0168-583X(93)90737-Q

    Article  Google Scholar 

  56. 56.

    A Jain and S Anthonysamy, J. Therm. Anal. Calorim. (2015), https://doi.org/10.1007/s10973-015-4818-3

    Article  Google Scholar 

  57. 57.

    Y Z Zheng et al, Chem. Mater. (2011), https://doi.org/10.1021/cm101525p

    Article  Google Scholar 

  58. 58.

    https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/023/28023731.pdf

Download references

Acknowledgements

The corresponding author would like to express his gratitude to the Presidium of Azerbaijan National Academy of Sciences and Science Fund of State Oil Company of the Azerbaijan Republic. Authors also gratefully acknowledge the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matlab N Mirzayev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirzayev, M.N., Demir, E., Mammadov, K.F. et al. Amorphisation of boron carbide under gamma irradiation. Pramana - J Phys 94, 110 (2020). https://doi.org/10.1007/s12043-020-01980-3

Download citation

Keywords

  • Boron carbide
  • gamma irradiation
  • amorphisation
  • scanning electron microscopy
  • X-ray diffraction
  • Fourier transform infrared spectroscopy
  • elemental mapping analysis

PACS Nos

  • 61.05.cj
  • 61.05.cp
  • 71.23.Cp
  • 07.85.–m
  • 68.37.Hk
  • 33.20.Ea