Finite-time synchronisation of uncertain delay spatiotemporal networks via unidirectional coupling technology

Abstract

In this paper, the problem of finite-time synchronisation of uncertain delay spatiotemporal networks via unidirectional coupling technology is investigated. Based on Lyapunov theorem and finite-time stability theory, an effective finite-time synchronisation scheme is designed to achieve finite-time synchronisation between uncertain delay spatiotemporal networks, and adaptive estimations of coupling coefficient, unknown parameter and uncertain network topology are realised. Then, the Fisher–Kolmogorov spatiotemporal model is used as the state equation of the network node for numerical simulation. The simulation results show that the finite-time synchronisation scheme is effective.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    J Petereit and A Pikovsky, Commun. Nonlinear Sci. Numer. Simul. 44, 344 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    W L Li, C Li and H S Song, Physica A 461, 270 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    L Lü and Q T Wei, Physica A535, 122418 (2019)

    Article  Google Scholar 

  4. 4.

    W L Li, C Li and H S Song, Phys. Rev. A 95, 023827 (2017)

    ADS  Article  Google Scholar 

  5. 5.

    A Michalak and A Nowakowski, J. Franklin Inst. 354, 8513 (2017)

    MathSciNet  Article  Google Scholar 

  6. 6.

    T Y Jing, D Y Zhang, J Mei and Y Fan, J. Franklin Inst. 356, 5464 (2019)

    MathSciNet  Article  Google Scholar 

  7. 7.

    W L Zhang, S J Yang, C D Li and Z B Li, Neural Process. Lett. 2, 1 (2019)

    ADS  Google Scholar 

  8. 8.

    M A A Ahmed, Y R Liu, W B Zhang, A Alsaedi and T Hayat, Neurocomputing 266, 274 (2017)

    Article  Google Scholar 

  9. 9.

    H Dai, W S Chen, J P Jia, J Y Liu and Z Q Zhang, Neurocomputing 245, 124 (2017)

    Article  Google Scholar 

  10. 10.

    L Cheng, Y Q Yang, L Li and X Sui, Physica A 500, 273 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    G L Cai, S Q Jiang, S M Cai and L X Tian, Pramana – J. Phys. 86, 545 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    S Q Jiang, X B Lu, C Xie and S M Cai, Neurocomputing 12, 1 (2017)

    Google Scholar 

  13. 13.

    C R Li, L Lü, L S Chen, Y X Hong, S Zhou and Y M Yang, Physica A 501, 238 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    S Saravanan, M S Ali and R Saravanakumar, Neural Process. Lett. 49, 573 (2019)

    Article  Google Scholar 

  15. 15.

    C Zhou, W L Zhang, X S Yang, C Xu and J W Feng, Neural Process. Lett. 46, 271 (2017)

    Article  Google Scholar 

  16. 16.

    M P Aghababa and H P Aghababa, Arab. J. Sci. Eng. 38, 3221 (2013)

    MathSciNet  Article  Google Scholar 

  17. 17.

    S H Qiu, Y L Huang and S Y Ren, Neurocomputing 275, 1250 (2017)

    Article  Google Scholar 

  18. 18.

    A J Wang, X F Liao and T Dong, Physica A 509, 111 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    L Duan, H Wei and L H Huang, Fuzzy Set. Syst. 361, 56 (2019)

    Article  Google Scholar 

  20. 20.

    C Zhang, X Y Wang, S B Wang, W J Zhou and Z Q Xia, IEEE Access 6, 17923 (2018)

    Article  Google Scholar 

  21. 21.

    T Y Jing, F Q Chen and Q H Li, Appl. Math. Model. 39, 7734 (2015)

    MathSciNet  Article  Google Scholar 

  22. 22.

    L L Li, Z W Tu, J Mei and J G Jian, Nonlinear Dyn. 85, 375 (2016)

    Article  Google Scholar 

  23. 23.

    S Q Li, X Y Peng, Y Tang and Y J Shi, Neurocomputing 308, 65 (2018)

    Article  Google Scholar 

  24. 24.

    P Selvaraj, R Sakthivel and O M Kwon, Neural Netw. 105, 154 (2018)

    Article  Google Scholar 

  25. 25.

    Y B Wu, C D Wang and W X Li, Nonlinear Dyn. 95, 1361 (2019)

    Article  Google Scholar 

  26. 26.

    W L Li, C Li, and H S Song, Phys. Lett. A 380, 672 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    C X Zhang, J H Wang, D X Zhang and X W Shao, Aerospace Sci. Technol. 73, 197 (2018)

    Article  Google Scholar 

  28. 28.

    A M Ghada and M S M Noorani, IEEE Access 7, 7082 (2019)

    Article  Google Scholar 

  29. 29.

    I Furtat, Y Orlov and A Fradkov, Int. J. Robust. Nonlinear Control 29, 793 (2018)

    Article  Google Scholar 

  30. 30.

    H Liu, J A Lu and J Lü, Automatica 45, 1799 (2009)

    Article  Google Scholar 

  31. 31.

    X Yang and J Cao, Appl. Math. Model. 34, 3631 (2010)

    MathSciNet  Article  Google Scholar 

  32. 32.

    M P Aghababa, S Khanmohammadi and G Alizadeh, Appl. Math. Model. 35, 3080 (2011)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 11747318).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ling Lü.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Hong, Y., Yang, Y. et al. Finite-time synchronisation of uncertain delay spatiotemporal networks via unidirectional coupling technology. Pramana - J Phys 94, 34 (2020). https://doi.org/10.1007/s12043-019-1903-3

Download citation

Keywords

  • Network synchronisation
  • finite-time
  • Lyapunov theorem
  • unidirectional coupling

PACs Nos

  • 05.45.Xt
  • 64.60.aq