Skip to main content
Log in

Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

D-dimensional fractional Klein–Gordon equation with fractional vector and scalar potential has been studied. Both fractional potentials are taken as attractive Coulomb-type with different multiplicative parameters, namely v and s. Jumarie-type definitions for fractional calculus have been used. We have succeeded in achieving Whittaker-type classical differential equation in fractional mode for the required eigenfunction. Fractional Whittaker equation has been manipulated using the behaviour of the eigenfunction at asymptotic distance and origin. This manipulation delivers fractional-type confluent hypergeometric equation to solve. Power series method has been employed to do the task. All the obtained results agree with the existing results in literature when fractional parameter \(\alpha \) is unity. Finally, we furnish numerical results with a few eigenfunction graphs for different spatial dimensions and fractional parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S F Lacroix, Traite du calcul differentiel et du calcul integral (Mme. VeCourcier, Paris, 1819)

    Google Scholar 

  2. J He, International Conference on vibrating Engineering (Dalian, China 1998) p. 288

    Google Scholar 

  3. S Fomin, V Chugunov and T Hashida, Transp. Porous Media 81, 187 (2010)

    Article  MathSciNet  Google Scholar 

  4. G M Zaslavsky, Phys. Rep. 371, 461 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. R Metzler and J Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  Google Scholar 

  6. J He, Bull. Sci. Technol. 15, 86 (1999)

    Google Scholar 

  7. F Riewe, Phy. Rev. E 53, 1890 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. S Muslih, D Baleanu and E Rabei, Phys. Scr. 73, 436 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. O P Agarwal, J. Math. Anal. Appl. 272, 368 (2002)

    Article  MathSciNet  Google Scholar 

  10. R Hilfer, Applications of fractional calculus in physics (World Scientific Publishing, River Edge, 2000)

    Book  Google Scholar 

  11. N Laskin, Phys. Lett. A 298, 298 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. N Laskin, Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. N Laskin, Chaos 10, 780 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. J Dong and M Xu, J. Math. Anal. Appl. 344, 1005 (2008)

    Article  MathSciNet  Google Scholar 

  15. X Y Guo and M Y Xu, J. Math. Phys. 47, 082104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. J Banerjee, U Ghosh, S Sarkar and S Das, Pramana – J. Phys.88(4): 70 (2017)

    Article  ADS  Google Scholar 

  17. K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (John Wiley and Sons, New York, 1993)

    MATH  Google Scholar 

  18. I Podlubny, Fractional differential equations, in: Mathematics in science and engineering (Academic Press, San Diego, 1999)

  19. A A Kilbas, H M Srivastava and J J Trujillo, Theory and application of fractional differential equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  20. M Caputo, Geophys. J. R. Astr. Soc. 13, 529 (1967)

    Article  ADS  Google Scholar 

  21. G Jumarie, Comput. Math. Appl. 51, 1367 (2006)

    Article  MathSciNet  Google Scholar 

  22. G Jumarie, Acta Math. Sinica 28(9), 1741 (2012)

    Article  MathSciNet  Google Scholar 

  23. G Jumarie, J. Appl. Math. Inform. 26, 1101 (2008)

    Google Scholar 

  24. G Jumarie, Appl. Math. Lett. 18, 817 (2005)

    Article  MathSciNet  Google Scholar 

  25. T Das, U Ghosh, S Sarkar and S Das, J. Math. Phys. 59, 022111 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. T Das, U Ghosh, S Sarkar and S Das, Pramana – J. Phys. 93: 76 (2019), https://doi.org/10.1007/s12043-019-1836-x

    Article  ADS  Google Scholar 

  27. Z Q Ma, S H Dong, X Y Gu, J Yu and M Lozada-Cassou, Int. J. Mod. Phys. E 13, 597 (2004)

    Article  ADS  Google Scholar 

  28. F Yasuk, A Durmus and I Boztosun, J. Math. Phys. 47, 082302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. A Alhaidari, H Bahlouli and A Al-Hasan, Phys. Lett. A 349, 87 (2005)

    Article  ADS  Google Scholar 

  30. S H Dong, G H Sun and D Popov, J. Math. Phys. 44, 4467 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. U Ghosh, J Banerjee, S Sarkar and S Das, Pramana – J. Phys. 90: 74 (2018), https://doi.org/10.1007/s12043-018-1561-x(2018)

    Article  ADS  Google Scholar 

  32. G B Arfken and H J Weber, Mathematical methods for physicists (Academic Press, San Diego, 2001)

    MATH  Google Scholar 

  33. G Jumarie, Cent. Eur. J . Phys. 11, 617 (2013)

    Google Scholar 

  34. G Jumarie, Appl. Math. Lett. 22, 378 (2009)

    Article  MathSciNet  Google Scholar 

  35. G Jumarie, Fractional differential calculus for non-differentiable functions: Mechanics, Geometry, Stochastics, Information Theory (LAP Lambert Academic Publishing, Germany, 2013)

    Google Scholar 

  36. U Ghosh, S Sengupta, S Sarkar and S Das, Eur. J. Acad. Essays 2, 70 (2015)

    Google Scholar 

  37. G M Mittag-Leffler, C. R. Acad. Sci. Paris (Ser. II) 137, 554 (1903)

  38. U Ghosh, S Sarkar and S Das, Adv. Pure Math. 5, 717 (2015)

    Article  Google Scholar 

  39. U Ghosh, S Sarkar and S Das, Am. J. Math. Anal. 3, 72 (2015)

    Google Scholar 

  40. S Das, Kindergarten of fractional calculus (to be published)

  41. S H Dong, Wave equations in higher dimensions (Springer, Berlin, 2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Ghosh, U., Sarkar, S. et al. Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential. Pramana - J Phys 94, 33 (2020). https://doi.org/10.1007/s12043-019-1902-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1902-4

Keywords

PACS Nos

Navigation