Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential

Abstract

D-dimensional fractional Klein–Gordon equation with fractional vector and scalar potential has been studied. Both fractional potentials are taken as attractive Coulomb-type with different multiplicative parameters, namely v and s. Jumarie-type definitions for fractional calculus have been used. We have succeeded in achieving Whittaker-type classical differential equation in fractional mode for the required eigenfunction. Fractional Whittaker equation has been manipulated using the behaviour of the eigenfunction at asymptotic distance and origin. This manipulation delivers fractional-type confluent hypergeometric equation to solve. Power series method has been employed to do the task. All the obtained results agree with the existing results in literature when fractional parameter \(\alpha \) is unity. Finally, we furnish numerical results with a few eigenfunction graphs for different spatial dimensions and fractional parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    S F Lacroix, Traite du calcul differentiel et du calcul integral (Mme. VeCourcier, Paris, 1819)

    Google Scholar 

  2. 2.

    J He, International Conference on vibrating Engineering (Dalian, China 1998) p. 288

    Google Scholar 

  3. 3.

    S Fomin, V Chugunov and T Hashida, Transp. Porous Media 81, 187 (2010)

    MathSciNet  Article  Google Scholar 

  4. 4.

    G M Zaslavsky, Phys. Rep. 371, 461 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    R Metzler and J Klafter, Phys. Rep. 339, 1 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    J He, Bull. Sci. Technol. 15, 86 (1999)

    Google Scholar 

  7. 7.

    F Riewe, Phy. Rev. E 53, 1890 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    S Muslih, D Baleanu and E Rabei, Phys. Scr. 73, 436 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    O P Agarwal, J. Math. Anal. Appl. 272, 368 (2002)

    MathSciNet  Article  Google Scholar 

  10. 10.

    R Hilfer, Applications of fractional calculus in physics (World Scientific Publishing, River Edge, 2000)

    Google Scholar 

  11. 11.

    N Laskin, Phys. Lett. A 298, 298 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    N Laskin, Phys. Rev. E 66, 056108 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    N Laskin, Chaos 10, 780 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    J Dong and M Xu, J. Math. Anal. Appl. 344, 1005 (2008)

    MathSciNet  Article  Google Scholar 

  15. 15.

    X Y Guo and M Y Xu, J. Math. Phys. 47, 082104 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    J Banerjee, U Ghosh, S Sarkar and S Das, Pramana – J. Phys.88(4): 70 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (John Wiley and Sons, New York, 1993)

    Google Scholar 

  18. 18.

    I Podlubny, Fractional differential equations, in: Mathematics in science and engineering (Academic Press, San Diego, 1999)

  19. 19.

    A A Kilbas, H M Srivastava and J J Trujillo, Theory and application of fractional differential equations (Elsevier, Amsterdam, 2006)

    Google Scholar 

  20. 20.

    M Caputo, Geophys. J. R. Astr. Soc. 13, 529 (1967)

    ADS  Article  Google Scholar 

  21. 21.

    G Jumarie, Comput. Math. Appl. 51, 1367 (2006)

    MathSciNet  Article  Google Scholar 

  22. 22.

    G Jumarie, Acta Math. Sinica 28(9), 1741 (2012)

    MathSciNet  Article  Google Scholar 

  23. 23.

    G Jumarie, J. Appl. Math. Inform. 26, 1101 (2008)

    Google Scholar 

  24. 24.

    G Jumarie, Appl. Math. Lett. 18, 817 (2005)

    MathSciNet  Article  Google Scholar 

  25. 25.

    T Das, U Ghosh, S Sarkar and S Das, J. Math. Phys. 59, 022111 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    T Das, U Ghosh, S Sarkar and S Das, Pramana – J. Phys. 93: 76 (2019), https://doi.org/10.1007/s12043-019-1836-x

    ADS  Article  Google Scholar 

  27. 27.

    Z Q Ma, S H Dong, X Y Gu, J Yu and M Lozada-Cassou, Int. J. Mod. Phys. E 13, 597 (2004)

    ADS  Article  Google Scholar 

  28. 28.

    F Yasuk, A Durmus and I Boztosun, J. Math. Phys. 47, 082302 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    A Alhaidari, H Bahlouli and A Al-Hasan, Phys. Lett. A 349, 87 (2005)

    ADS  Article  Google Scholar 

  30. 30.

    S H Dong, G H Sun and D Popov, J. Math. Phys. 44, 4467 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    U Ghosh, J Banerjee, S Sarkar and S Das, Pramana – J. Phys. 90: 74 (2018), https://doi.org/10.1007/s12043-018-1561-x(2018)

    ADS  Article  Google Scholar 

  32. 32.

    G B Arfken and H J Weber, Mathematical methods for physicists (Academic Press, San Diego, 2001)

    Google Scholar 

  33. 33.

    G Jumarie, Cent. Eur. J . Phys. 11, 617 (2013)

    Google Scholar 

  34. 34.

    G Jumarie, Appl. Math. Lett. 22, 378 (2009)

    MathSciNet  Article  Google Scholar 

  35. 35.

    G Jumarie, Fractional differential calculus for non-differentiable functions: Mechanics, Geometry, Stochastics, Information Theory (LAP Lambert Academic Publishing, Germany, 2013)

    Google Scholar 

  36. 36.

    U Ghosh, S Sengupta, S Sarkar and S Das, Eur. J. Acad. Essays 2, 70 (2015)

    Google Scholar 

  37. 37.

    G M Mittag-Leffler, C. R. Acad. Sci. Paris (Ser. II) 137, 554 (1903)

  38. 38.

    U Ghosh, S Sarkar and S Das, Adv. Pure Math. 5, 717 (2015)

    Article  Google Scholar 

  39. 39.

    U Ghosh, S Sarkar and S Das, Am. J. Math. Anal. 3, 72 (2015)

    Google Scholar 

  40. 40.

    S Das, Kindergarten of fractional calculus (to be published)

  41. 41.

    S H Dong, Wave equations in higher dimensions (Springer, Berlin, 2011)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Uttam Ghosh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, T., Ghosh, U., Sarkar, S. et al. Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential. Pramana - J Phys 94, 33 (2020). https://doi.org/10.1007/s12043-019-1902-4

Download citation

Keywords

  • Fractional Klein–Gordon equation
  • power series method
  • fractional Coulomb potential
  • Mittag–Leffler function

PACS Nos

  • 02.30.–f
  • 03.65.Db
  • 03.65.Ge
  • 02.30.Rz