Joint remote state preparation of an arbitrary eight-qubit cluster-type state


In this paper, we put forward a scheme to realise joint remote state preparation (JRSP) of an arbitrary eight-qubit cluster-type state with two non-maximally entangled Greenberger–Horne–Zeilinger (GHZ) states in a recursive manner. The senders begin by helping the remote receiver to construct one intermediate state which is related to the target state closely. Then, the receiver introduces auxiliary qubits and applies appropriate local operations to obtain the target eight-qubit cluster-type state. It is shown that one new GHZ channel can be distributed among three participants with a certain probability if the initial attempt fails. Moreover, compared with the previous protocols, in our scheme both quantum resources and classical communications are considerably reduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    C H Bennett, G Brassard, C Crepeau, R Jozsa, A Peres and W K Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  Google Scholar 

  2. 2.

    Y Y Nie, Z H Hong, Y B Huang, X J Yi and S S Li, Int. J. Theor. Phys. 48, 1485 (2009)

    Google Scholar 

  3. 3.

    V Scarani, S Iblisdir, N Gisin and A Acin, Rev. Mod. Phys. 77, 1225 (2005)

    ADS  Google Scholar 

  4. 4.

    P C Ma, G B Chen, X W Li and Y B Zhan, Pramana – J. Phys. 91 6 (2018)

    ADS  Google Scholar 

  5. 5.

    R H Shi, L S Huang, W Yang and H Zhong, Quantum Inf. Process. 10, 231 (2011)

    MathSciNet  Google Scholar 

  6. 6.

    F G Deng, X H Li, C Y Li, P Zhou and H Y Zhou, Phys. Rev. A72, 440 (2005)

    Google Scholar 

  7. 7.

    J Wang, Q Zhang and C Tang, Phys. Lett. A 358, 256 (2006)

    ADS  Google Scholar 

  8. 8.

    C Wang, F G Deng and G L Long, Opt. Commun. 253, 15 (2005)

    ADS  Google Scholar 

  9. 9.

    H K Lo, Phys. Rev. A 62, 012313 (2000)

    ADS  Google Scholar 

  10. 10.

    A K Pati, Phys. Rev. A 63, 014302 (2001)

    ADS  Google Scholar 

  11. 11.

    A Hayashi, T Hashimoto and M Horibe, Phys. Rev. A 67, 052302 (2003)

    ADS  Google Scholar 

  12. 12.

    H Y Dai, P X Chen, M L Zhang and Z Cheng, Chin. Phys. B 17, 27 (2008)

    ADS  Google Scholar 

  13. 13.

    M Y Ye, Y S Zhang and G C Guo, Phys. Rev. A 69, 022310 (2004)

    ADS  Google Scholar 

  14. 14.

    Z Y Wang, D Wang and L F Han, Int. J. Theor. Phys. 55, 1 (2016)

    Google Scholar 

  15. 15.

    S Y Ma, X B Chen, M X Luo, R Zhang and Y X Yang, Opt. Commun. 284, 4088 (2011)

    ADS  Google Scholar 

  16. 16.

    J Wei, L Shi, L Ma, Y Xue, X Zhuang, Q Kang and S L Xue, Quantum Inf. Process. 16, 260 (2017)

    ADS  Google Scholar 

  17. 17.

    W T Liu, W Wu, B Q Ou, P X Chen, C Z Li and J M Yuan, Phys. Rev. A 76, 22308 (2012)

    Google Scholar 

  18. 18.

    Z Y Wang, Quantum Inf. Process. 12, 1321 (2013)

    ADS  Google Scholar 

  19. 19.

    S Y Ma and M X Luo, Chin. Phys. B  23, 090308 (2014)

    ADS  Google Scholar 

  20. 20.

    N R Zhou, H L Cheng, X Y Tao and L H Gong, Quantum Inf. Process. 13, 513 (2014)

    ADS  Google Scholar 

  21. 21.

    C Y Hua and Y X Chen, Quantum Inf. Process. 15, 4773 (2016)

    ADS  MathSciNet  Google Scholar 

  22. 22.

    J F Song and Z Y Wang, Int. J. Theor. Phys. 50, 2410 (2011)

    Google Scholar 

  23. 23.

    N Chen, D X Quan, H Yang and C X Pei, Quantum Inf. Process. 15, 1719 (2016)

    ADS  MathSciNet  Google Scholar 

  24. 24.

    J Wei, L Shi, Y Zhu, Y Xue, Z Xu and J Jiang, Quantum Inf. Process. 17, 70 (2018)

    ADS  Google Scholar 

  25. 25.

    Y Xia, J Song and H S Song, J. Phys. B 40, 3719 (2007)

    ADS  Google Scholar 

  26. 26.

    H H Liu, L Y Cheng, X Q Shao, L L Sun, S Zhang and K H Yeon, Int. J. Theor. Phys. 50, 3023 (2011)

    Google Scholar 

  27. 27.

    L R Long, P Zhou, Z Li and C L Yin, Int. J. Theor. Phys. 51, 2438 (2012)

    Google Scholar 

  28. 28.

    Z H Zhang, L Shu, Z W Mo, J Zheng, S Y Ma and M X Luo, Quantum Inf. Process. 13, 1979 (2014)

    ADS  MathSciNet  Google Scholar 

  29. 29.

    M M Wang, Z G Qu, W Wang and J G Chen, Int. J. Quantum Inf. 15, 1750012 (2017)

    MathSciNet  Google Scholar 

  30. 30.

    Y B Zhan, B L Hu and P C Ma, J. Phys. B 44, 095501 (2011)

    ADS  Google Scholar 

  31. 31.

    H B Chen, H Fu, X W Li, P C Ma and Y B Zhan, Pramana – J. Phys.86, 783 (2016)

    ADS  Google Scholar 

  32. 32.

    Y B Zhan, Q Y Zhang and J Shi, Chin. Phys. B 19, 080310 (2010)

    ADS  Google Scholar 

  33. 33.

    N B. An, C T Bich and D N Van, J. Phys. B 44, 135506 (2011)

    ADS  Google Scholar 

  34. 34.

    H B Wang, X Y Zhou, X X An, M M Cui and D S Fu, Int. J. Theor. Phys. 55, 3588 (2016)

    Google Scholar 

  35. 35.

    L W Chang, S H Zheng, L Z Gu, D Xiao and Y X Yang, Chin. Phys. B  23, 090307 (2014)

    ADS  Google Scholar 

  36. 36.

    H Fu, P C Ma, G B Chen, X W Li and Y B Zhan, Pramana – J. Phys. 88: 92 (2017)

    ADS  Google Scholar 

  37. 37.

    K Hou, Quantum Inf. Process. 12, 3821 (2013)

    ADS  MathSciNet  Google Scholar 

  38. 38.

    B S Choudhury and S Samanta, Quantum Inf. Process. 17, 175(2018)

    ADS  Google Scholar 

  39. 39.

    B S Choudhury and A Dhara, Quantum Inf. Process. 14, 373 (2015)

    ADS  MathSciNet  Google Scholar 

  40. 40.

    C T Bich, N V Don and N B An, Int. J. Theor. Phys. 51, 2272 (2012)

    Google Scholar 

  41. 41.

    W L Chen, S Y Ma and Z G Qu, Chin. Phys. B 25, 100304 (2016)

    ADS  Google Scholar 

  42. 42.

    M M Wang, Z G Qu, W Wang and J G Chen, Quantum Inf. Process. 16, 140 (2017)

    ADS  Google Scholar 

  43. 43.

    W Q Li, H W Chen and Z H Liu, Int. J. Theor. Phys. 56, 351 (2017)

    Google Scholar 

  44. 44.

    L Song and R Y Chen, Int. J. Theor. Phys. 54, 421(2015)

    Google Scholar 

  45. 45.

    W Li, X Zha and J Qi, Int. J. Theor. Phys. 55, 3927 (2016)

    Google Scholar 

  46. 46.

    Y M Liao, P Zhou, X C Qin and Y H He, Quantum Inf. Process. 13, 615 (2014)

    ADS  MathSciNet  Google Scholar 

  47. 47.

    X J Yi, J M Wang and G Q Huang, Int. J. Theor. Phys. 50, 364 (2011)

    Google Scholar 

  48. 48.

    M Q Bai and Z W Mo, Quantum Inf. Process. 12, 1053 (2013)

    ADS  MathSciNet  Google Scholar 

  49. 49.

    B S Choudhury and A Dhara, Pramana – J. Phys.  86, 973 (2016)

    ADS  Google Scholar 

  50. 50.

    P Dong, Z Y Xue, M Yang and Z L Cao Phys. Rev. A73, 033818 (2006)

    ADS  Google Scholar 

Download references


This work is supported by the Tang scholar project of Soochow University, the National Natural Science Foundation of China (Nos 6147319 and 61873162), the Suzhou key industry technology innovation project (No. SYG201808) and Key Laboratory of System Control and Information Processing, Ministry of Education, China (No. Scip201804).

Author information



Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, LY., Jiang, M. & Chen, C. Joint remote state preparation of an arbitrary eight-qubit cluster-type state. Pramana - J Phys 94, 41 (2020).

Download citation


  • Joint remote state preparation
  • Greenberger–Horne–Zeilinger state
  • cluster-type state
  • recursive


  • 03.67.–a
  • 03.65.Ud