Optimised wave perturbation for the linear instability of magnetohydrodynamics in plane Poiseuille flow


In this work, linear stability of an electrically conductive fluid experiencing Poiseuille flow for minimum Reynolds value under a normal magnetic field is analysed using the Chebyshev collocation method. The neutral curves of linear instability are derived by utilising Qualitat and Zuverlassigkeit (QZ) method. Instability of the magnetohydrodynamics for plane Poiseuille flow is introduced by solving the generalised Orr–Sommerfeld equation to determine the growth rates, wave number and spatial shapes of the eigenmodes. To solve linear problems, we use numerical methods which help us at each time step of the simulation, uncoupled by physical processes, which can improve the computational performance. This article provides the stability and error analysis, presents a concise study of the Poiseuille flow, and produces computational tests to support the given theory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    T M Nabil, M F El-Sabbagh and M A S El-Sayed (Hajjaj), J. Fluid Dynam. 38 (2006)

  2. 2.

    L K Martinson, K B Pavlov and S L Simkhovich, Magnetohydrodynamics 2, 911 (1972)

    Google Scholar 

  3. 3.

    D Shuai, L Lishuai and Y Xuemin, PLoS ONE 10, 1 (2017)

    Google Scholar 

  4. 4.

    F Sultan, W A Khan, M Ali and M Shahzad, J. Braz. Soc. Mech. Sci. Eng. 41, 439 (2019)

    Article  Google Scholar 

  5. 5.

    R Yao, L William and Z Haiyun, J. Sci. Comput. 76, 3 (2018)

    Google Scholar 

  6. 6.

    E Weisberg, J Peterson and D M Endrizzi, AIP Publishing 24, 5 (2017)

    Google Scholar 

  7. 7.

    D Chuanfei, W Liang, H Yi-Min and C Luca, Phys. Plasmas 121, 16 (2018)

    Google Scholar 

  8. 8.

    S M Taghavi, Common Nonlinear Sci. Numer. Simulat. 14, 1 (2009)

    Article  Google Scholar 

  9. 9.

    L Buhler, J. Fluid Mech. 326, 125 (1996)

  10. 10.

    C C Lin, Hydrodynamic stability (Cambridge University Press, 1995)

  11. 11.

    R C Lock, Proc. Roy. Soc. London 233, 105 (1995)

    ADS  Google Scholar 

  12. 12.

    R V Southwell and L Chitty, Philos. Trans. Roy. Soc. London Ser. A 229, 205 (1930)

    ADS  Google Scholar 

  13. 13.

    L C Pekeris, J. Math. Proc. Cambridge Philos. Soc. 32, 55 (1936)

  14. 14.

    T C Ho and M M Denn, J. Non-Newtonian Fluid Mech. 3, 179 (1977)

    Article  Google Scholar 

  15. 15.

    S Muhammad, G Ali, S I A Shah, M Irfan, W A Khan, M Ali and F Sultan, Pramana – J. Phys93: 40 (2019)

    ADS  Article  Google Scholar 

  16. 16.

    M Ali, W A Khan, M Irfan, F Sultan, M Shahzad and M Khan, Appl. Nanosci., https://doi.org/10.1007/s13204-019-01038-w

  17. 17.

    W A Khan, M Ali, M Irfan, M Khan, M Shahzad and F Sultan, Appl. Nanosci.,https://doi.org/10.1007/s13204-019-01067-5

  18. 18.

    F Sultan, W A Khan, M Ali, M Shahzad, F Khan and M Waqas, J. Mol. Liq288 (2019)

  19. 19.

    M Shahzad, F Sultan, I Haq, M Ali and W A Khan, Pramana – J. Phys. 92: 64 (2019)

    ADS  Article  Google Scholar 

  20. 20.

    W A Khan, M Ali, F Sultan, M Shahzad, M Khan and M Irfan, Pramana – J. Phys. 92: 16 (2019)

    ADS  Article  Google Scholar 

  21. 21.

    W A Khan, F Sultan, M Ali, M Shahzad, M Khan and M Irfan, J. Braz. Soc. Mech. Sci. Eng. 41, 4 (2019)

    Article  Google Scholar 

  22. 22.

    F Sultan, W A Khan, M Ali, M Shahzad, M Irfan and M Khan, Pramana – J. Phys. 92: 21 (2019)

    ADS  Article  Google Scholar 

  23. 23.

    Z Hussain, C Liu and M J Ni, J. Graduate University of Chin. Acad. Sci. 30, 304 (2013)

  24. 24.

    R W Hamming, Numerical method for scientists and engineers (McGraw-Hill, New York, 1962)

  25. 25.

    L Fox and I B Paker, Chebyshev polynomials in numerical analysis (Oxford University Press, 1968)

Download references

Author information



Corresponding author

Correspondence to Muhammad Shahzad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z., Ali, M., Shahzad, M. et al. Optimised wave perturbation for the linear instability of magnetohydrodynamics in plane Poiseuille flow. Pramana - J Phys 94, 49 (2020). https://doi.org/10.1007/s12043-019-1900-6

Download citation


  • Computational fluid dynamics
  • instability
  • magnetohydrodynamics
  • Chebyshev collocation method
  • electrically conducting fluid


  • 47.10.A−
  • 47.11.−j
  • 47.20.−k
  • 47.15.−x