Effects of the positions of scintillation detectors with fast scintillators and photomultiplier tubes on TOF–PET performance


The objective of this study is to improve the time resolution value of a coincidence spectrometer used in a time-of-flight–positron emission tomography (TOF–PET) system. This spectrometer is used in medical imaging systems. The coincidence spectrometer is manufactured by using a BC420-type plastic scintillator and R1828-01-type photomultiplier tube, and the time resolution value of the manufactured spectrometer is determined. The accuracy of the experimental results is determined using the FLUKA Monte Carlo simulation program. Detectors are first manufactured in this program. Experimental and simulation results are compared and are found to be in good agreement. Optimal positions of the detectors are investigated to improve the coincidence time resolution of the spectrometer. Time resolution improvement of the optimal detector positions enables higher time-of-flight (TOF) gain and spatial resolution, leading to better image quality, reduction in patient doses and detection of small lesions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    M N Wernick and J N Aarsvold, Emission tomography: The fundamentals of PET and SPECT (Elsevier Academic Press, USA, 2004)

    Google Scholar 

  2. 2.

    International Atomic Energy Agency, Quality assurance for PET and PET\(/\)CT systems (IAEA Human Health Series No. 1, Vienna, 2009)

  3. 3.

    M M Khalil, Basic sciences of nuclear medicine (Springer-Verlag, Germany, 2011)

    Google Scholar 

  4. 4.

    R A Powsner, M R Palmer and E R Powsner, Essentials of nuclear medicine, physics and instrumentation (John Wiley & Sons, USA, 2013)

    Google Scholar 

  5. 5.

    Hamamatsu Photonics Photomultiplier Tubes for PET, http://www.hamamatsu.com/eu/en/product/application/1501/3503/3001/index.html#pmt_1_en=0

  6. 6.

    M Moszynski and B Bengtson, Nucl. Instrum. Methods 158, 1 (1979)

    ADS  Article  Google Scholar 

  7. 7.

    W S Choong, Phys. Med. Biol. 54, 6495 (2009)

    Article  Google Scholar 

  8. 8.

    J S Karp, S Surti, M E Daube-Witherspoon and G Muehllehner, J. Nucl. Med. 49, 462 (2008)

    Article  Google Scholar 

  9. 9.

    W W Moses, IEEE Trans. Nucl. Sci. 50, 1325 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    W W Moses, Nucl. Instrum. Methods A 580, 919 (2007)

    ADS  Article  Google Scholar 

  11. 11.

    M Conti, B Bendriem, M Casey, M Chen, F Kehren, C Michel and V Panin, Phys. Med. Biol. 50, 4507 (2005)

    Article  Google Scholar 

  12. 12.

    M Conti, Phys. Med. 25, 1 (2009)

    Article  Google Scholar 

  13. 13.

    M E Casey, http://scipp.ucsc.edu/~hartmut/UFSD/Simens_ultraHD-PET_White_Paper.pdf

  14. 14.

    S Vandenberghe, E Mikhaylova, E D’Hoe, P Mollet and J S Karp, EJNMMI Phys. 3, 1 (2016)

    Article  Google Scholar 

  15. 15.

    J T Bushberg, J A Seibert, E M Leidholdt and J M Boone, The essential physics of medical imaging (William-Wilkins, USA, 2001)

    Google Scholar 

  16. 16.

    J J P De Lima, Nuclear medicine physics (Taylor & Francis, USA, 2011)

    Google Scholar 

  17. 17.

    T Budinger, J. Nucl. Med. 24, 73 (1983)

    Google Scholar 

  18. 18.

    F Collamati, An intraoperative beta-probe for cancer surgery, Ph.D. thesis (Sapienza University, 2016)

  19. 19.

    A Ferrari, P R Sala, A Fasso and J Ranft, Fluka: A multi-particle transport code, CERN INFN/T\_05/11: SLAC-R-773, 2005

  20. 20.

    G Battistoni, F Cerutti, A Fasso, A Ferrari, S Muraro, J Ranft, S Roesler and P R Sala, AIP Conf. Proc. 896, 31 (2007)

    ADS  Article  Google Scholar 

  21. 21.

    E E Ermis, C Celiktas and E Pilicer, Radiat. Meas. 62, 52 (2014)

    Article  Google Scholar 

  22. 22.

    E E Ermis, C Celiktas and E Pilicer, Rev. Sci. Instrum. 87, 053504 (2016)

    ADS  Article  Google Scholar 

  23. 23.

    M E Phelps, PET physics, instrumentation, and scanners (Springer, USA, 2006)

    Google Scholar 

  24. 24.

    Saint-Gobain Scintillators, Organic scintillation materials and assemblies, https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/sgc-organics-plastic-scintillators.pdf

  25. 25.

    S N Ahmed, Physics and engineering of radiation detection (Elsevier, Netherlands, 2015)

    Google Scholar 

  26. 26.

    R W Leo, Techniques for nuclear and particle physics experiments (Springer-Verlag, Germany, 1987)

    Google Scholar 

  27. 27.

    N Tsoulfanidis, Measurements and detection radiation (Taylor & Francis, USA, 1995)

    Google Scholar 

  28. 28.

    G F Knoll, Radiation detection and measurement (John Wiley & Sons. Inc, New York, 2000)

    Google Scholar 

  29. 29.

    Hamamatsu Photonics KK, Photomultiplier tubes basics and applications, https://www.hamamatsu.com/eu/en/product/type/R1828-01/index.html

  30. 30.

    Ortec Model VT120, Fast timing preamplifier operating and service manual, https://www.ortec-online.com/-/media/ametekortec/brochures/vt120.pdf

  31. 31.

    M O Bedwell and T J Paulus, IEEE Trans. Nucl. Sci. 23, 234 (1976)

    ADS  Article  Google Scholar 

  32. 32.

    M Conti, Eur. J. Nucl. Med. Mol. Imaging 38, 1147 (2011)

    Article  Google Scholar 

  33. 33.

    J Torres, R Garcia, A Aguilar, J Soret, J Martos, A J Gonzalez, F Sanchez, J M Benlloch and M J Rodriguez, Implementation of TOF-PET systems on advanced reconfigurable logic devices (Intech, Croatia, 2013)

Download references


This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 116F324.

Author information



Corresponding author

Correspondence to Elif Ebru Ermis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ermis, E.E., Celiktas, C. Effects of the positions of scintillation detectors with fast scintillators and photomultiplier tubes on TOF–PET performance. Pramana - J Phys 94, 27 (2020). https://doi.org/10.1007/s12043-019-1895-z

Download citation


  • Coincidence spectrometer
  • time resolution
  • time-of-flight gain
  • FLUKA Monte Carlo simulation program


  • 07.57.Kp