Investigation of the radiation shielding capability of \({x}\hbox {PbO}\)\((50-x)\hbox {BaO}\)\(50{\hbox {B}}_2 {\hbox {O}}_3\) glass system using Geant4, Fluka, WinXCOM and comparison of data with the experimental data


In this study, mass attenuation coefficient (\(\mu _{\mathrm {m}}\)), transmission fractions (T), effective atomic numbers (\({\hbox {Z}}_{\mathrm {eff}}\)) and half-value layer (HVL) of the \({x}\hbox {PbO}\)\((50-x)\hbox {BaO}\)\(50 {\hbox {B}}_2 {\hbox {O}}_3\) (where \(x = 10, 20, 30, 40 \, \hbox {mol}\%\)) glass system have been determined from the Monte Carlo simulations carried out with Geant4 and Fluka simulation toolkits and WinXCOM database software. The calculated results were compared with the experimentally obtained \(\mu _{\mathrm {m}}\) values of the selected glass in order to validate the Geant4 model of HPGe detector and Fluka model of NaI(Tl) detectors. T, \({\hbox {Z}}_{\mathrm {eff}}\) and HVL shielding parameters of the studied glass system indicate that increase of PbO content from 10 to 40% results in a better shielding behaviour thanks to the high atomic number of lead.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    H S Gokce, B C Ozturk, N F Cam and O A Cakir, Cement Concrete Comp. 92, 56 (2018)

    Article  Google Scholar 

  2. 2.

    S F Olukotun, S T Gbenu, F I Ibitoye, O F Oladejo and H O Shittu, Nucl. Eng. Technnol. 50(6), 957 (2018)

    Article  Google Scholar 

  3. 3.

    F Tabbakh, Pramana – J. Phys. 86, 939 (2016)

    ADS  Article  Google Scholar 

  4. 4.

    M I Sayyed, F Akman, A Kumar and M R Kacal, Results Phys. 11, 1100 (2018)

    ADS  Article  Google Scholar 

  5. 5.

    T Kaur, J Sharma and T Singh, Radiat. Phys. Chem. 156, 90 (2019)

    Article  Google Scholar 

  6. 6.

    V P Singh, M E Medhat and S P Shirmardi, Radiat. Phys. Chem. 106, 255 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    D K Gaikwad, P P Pawar and T P Selvam, Pramana – J. Phys. 87: 12 (2016)

    ADS  Article  Google Scholar 

  8. 8.

    A Kumar, Radiat. Phys. Chem. 136, 50 (2017)

    ADS  Article  Google Scholar 

  9. 9.

    S Kaewjaeng, S Kothan, N Chanthima, H Kim and J Kaewkhao, Mater. Today: Proc. 5, 14901 (2018)

    Google Scholar 

  10. 10.

    M G Dong, R El-Mallawany, M I Sayyed and H O Tekin, Radiat. Phys. Chem. 141, 172 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    B Cherdsak, L Jintana, Y Chadet and L Raewat, Radiat. Phys. Chem. 81, 785 (2012)

    Article  Google Scholar 

  12. 12.

    N Sigh, K J Singh, K Singh and H Singh, Radiat. Meas. 41, 84 (2006)

    Article  Google Scholar 

  13. 13.

    S Agostinelli et al, Nucl. Instrum. Meth. Phys. Res. A506(3), 250 (2003)

    ADS  Article  Google Scholar 

  14. 14.

    M Singh, G Singh, B S Sandhu and B Singh, Appl. Radiat. Isot. 64(3), 373 (2006)

    Article  Google Scholar 

  15. 15.

    G Battisoni et al, Ann. Nucl. Energy 82, 10 (2015)

    Article  Google Scholar 

  16. 16.

    L Gerward, L Guilbert, K B Jensen and H Levring, Radiat. Phys. Chem. 71, 653 (2004)

    ADS  Article  Google Scholar 

  17. 17.

    S A Issa, Radiat. Phys. Chem. 82, 10 (2015)

    Google Scholar 

Download references


The authors would like to express their gratitude to the editor(s) and reviewer(s) for their valuable and constructive comments.

Author information



Corresponding author

Correspondence to A Aşkin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aşkin, A., Mutuwong, C., Nutaro, T. et al. Investigation of the radiation shielding capability of \({x}\hbox {PbO}\)\((50-x)\hbox {BaO}\)\(50{\hbox {B}}_2 {\hbox {O}}_3\) glass system using Geant4, Fluka, WinXCOM and comparison of data with the experimental data. Pramana - J Phys 94, 11 (2020).

Download citation


  • Photon attenuation
  • glasses
  • Geant4
  • Fluka
  • WinXCOM


  • 07.05.Tp
  • 29.30.Kv
  • 29.40.Wk