Lie symmetries and invariant solutions of \((2+1)\)-dimensional breaking soliton equation

Abstract

The present article deals with the symmetry reductions and invariant solutions of breaking soliton equation by virtue of similarity transformation method. The equation represents the collision of a Riemann wave propagating along the y-axis with a long wave along the x-axis. The infinitesimal transformations under one parameter for the governing system have been derived by exploiting the invariance property of Lie group theory. Consequently, the number of independent variables is reduced by one and the system remains invariant. A repeated application transforms the governing system into systems of ordinary differential equations. These systems degenerate well-known soliton solutions under some limiting conditions. The obtained solutions are extended with numerical simulation resulting in dark solitons, lumps, compactons, multisolitons, stationary and parabolic profiles and are shown graphically.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    F Calogero and A Degasperis, Nuovo Cimento B Ser. 11. 32, 201 (1976)

    Article  Google Scholar 

  2. 2.

    G Q Xu, Appl. Math. Lett. 50, 16 (2015)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Y S Li and Y J Zhang, J Phys. A: Math. Gen. 26, 7487 (1993)

    ADS  Article  Google Scholar 

  4. 4.

    H Y Ruan, J. Phys. Soc. Jpn. 71(2), 453 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    S H Ma, J Y Qiang and J P Fang, Commun. Theor. Phys. 48, 662 (2007)

    ADS  Article  Google Scholar 

  6. 6.

    Y Chen, B Li and H Q Zhang, Commun. Theor. Phys. (Beijing, China) 40, 137 (2003)

    ADS  Google Scholar 

  7. 7.

    Y Z Peng and E V Krishnan, Commun. Theor. Phys. (Beijing, China) 44, 807 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    Z Xie and H Q Zhang, Commun. Theor. Phys. (Beijing, China) 43, 401 (2005)

    ADS  Google Scholar 

  9. 9.

    L N Cao, D S Wang and L X Chen, Commun. Theor. Phys. (Beijing, China) 47, 270 (2007)

    ADS  Google Scholar 

  10. 10.

    S Zhang, Appl. Math. Comput. 190(1), 510 (2007)

    MathSciNet  Google Scholar 

  11. 11.

    Z Zhao, Z Dai and G Mu, Comput. Math. Appl. 61(8), 2048 (2011)

    MathSciNet  Article  Google Scholar 

  12. 12.

    F Taşcan and A Bekir, Appl. Math. Comput. 215(8), 3134 (2009)

    MathSciNet  Google Scholar 

  13. 13.

    M Kumar, D V Tanwar and R Kumar, Comput. Math. Appl. 75(1), 218 (2018)

    MathSciNet  Article  Google Scholar 

  14. 14.

    G W Bluman and J D Cole, Similarity methods for differential equations (Springer-Verlag, New York, 1974)

    Google Scholar 

  15. 15.

    P J Olver, Applications of Lie groups to differential equations (Springer-Verlag, New York, 1993)

    Google Scholar 

  16. 16.

    M Kumar and Y K Gupta, Pramana – J. Phys. 74(6), 883 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    M Kumar, D V Tanwar and R Kumar, Nonlinear Dyn. 94(4), 2547 (2018)

    Article  Google Scholar 

  18. 18.

    M Kumar and D V Tanwar, Commun. Nonlinear Sci. Numer. Simul. 69, 45 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    T Özer, Comput. Math. Appl. 55(9), 1923 (2008)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Y Yıldırım and E Yaşar, Chaos Solitons Fractals 107, 146 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    T Raja Sekhar and P Satapathy, Comput. Math. Appl. 72(5), 1436 (2016)

    MathSciNet  Article  Google Scholar 

  22. 22.

    A Bansal, A Biswas, Q Zhou and M M Babatin, Optik 169, 12 (2018)

    ADS  Article  Google Scholar 

  23. 23.

    M Kumar and D V Tanwar, Comput. Math. Appl.76(11–12), 2535 (2018)

    MathSciNet  Article  Google Scholar 

  24. 24.

    S S Ray, Comput. Math. Appl. 74(6), 1158 (2017)

    MathSciNet  Article  Google Scholar 

  25. 25.

    M Singh and R K Gupta, Pramana – J. Phys. 92: 1 (2019)

    ADS  Article  Google Scholar 

  26. 26.

    Abdullah, A R Seadawy and J Wang, Pramana – J. Phys. 91: 26 (2018)

  27. 27.

    Z Du, B Tian, X Y Xie, J Chai and X Y Wu, Pramana – J. Phys. 90: 45 (2018)

    ADS  Article  Google Scholar 

  28. 28.

    J Manafian and M Lakestani, Pramana – J. Phys. 92: 41 (2019)

    ADS  Article  Google Scholar 

  29. 29.

    M Shahriari and J Manafian, Pramana – J. Phys. 93: 3 (2019)

    ADS  Article  Google Scholar 

  30. 30.

    J Manafian, B M Ivatloo and M Abapour, Appl. Math. Comput. 356, 13 (2019)

    MathSciNet  Google Scholar 

  31. 31.

    J Manafian, Comput. Math. Appl. 76(5), 1246 (2018)

    MathSciNet  Article  Google Scholar 

  32. 32.

    J Manafian, M Lakestani and A Bekir, Pramana – J. Phys. 87: 95 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    M Cinefra, Int. J. Hydromechatronics 1(4), 415 (2019)

    Article  Google Scholar 

  34. 34.

    T Ak, T Aydemir, A Saha and A H Kara, Pramana – J. Phys. 90: 78 (2018)

    ADS  Article  Google Scholar 

  35. 35.

    A R Adem, Y Yıldırım and E Yaşar, Pramana – J. Phys. 92: 36 (2019)

    ADS  Article  Google Scholar 

  36. 36.

    O I Bogoyavlenskii, Math. USSR Izvestiya 34(2), 245 (1989)

    ADS  Article  Google Scholar 

  37. 37.

    N J Zabusky and M D Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    ADS  Article  Google Scholar 

  38. 38.

    A S Davydov, Phys. Scr. 20, 387 (1979)

    ADS  Article  Google Scholar 

  39. 39.

    E Demler and A Maltsev, Ann. Phys. 326(7), 1775 (2011)

    ADS  Article  Google Scholar 

  40. 40.

    D Daghan and O Donmez, Braz. J. Phys. 46(3), 321 (2016)

    ADS  Article  Google Scholar 

  41. 41.

    M M Scott, M P Kostylev, B A Kalinikos and C E Patton, Phys. Rev. B 71, 174440(1–4) (2005)

    ADS  Article  Google Scholar 

  42. 42.

    P Rosenau and J M Hyman, Phys. Rev. Lett. 70, 564 (1993)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dig Vijay Tanwar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Tanwar, D.V. Lie symmetries and invariant solutions of \((2+1)\)-dimensional breaking soliton equation. Pramana - J Phys 94, 23 (2020). https://doi.org/10.1007/s12043-019-1885-1

Download citation

Keywords

  • Breaking soliton equation
  • symmetry reductions
  • invariant solutions
  • Lie group theory
  • lumps

PACS

  • 02.20.Qs
  • 02.20.Sv
  • 02.30.Jr
  • 05.45.Yv