Chirped solitons in optical monomode fibres modelled with Chen–Lee–Liu equation

Abstract

The paper studies the extraction of chirped soliton to Chen–Lee–Liu equation (CLLE) with the group velocity dispersion (GVD) and self-steeping coefficients that describe pulse transmission through optical monomode fibres. The chirped bright, dark and singular optical solitons are obtained and the results show that nonlinear chirp parameters strongly vary on self-steeping, GVD and spreading effects. The constraint conditions for the existence of solitons are also derived during the derivation. The results are helpful and important for understanding the propagation of optical pulses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    A Bouzida, H Triki, A Biswa and Q Zhou, Optik142, 77 (2017)

    ADS  Article  Google Scholar 

  2. 2.

    X W Yan, S H Tian, M J Dong and T T Zhang, J. Phys. Soc. Jpn. 88, 7 (2019)

    Article  Google Scholar 

  3. 3.

    H Wang, Yan S Titan, T T Zhang and Y Chen, Front. Math. China142, 631 (2019)

    Article  Google Scholar 

  4. 4.

    S F Tian and T T Zhang, J. Phys. A52, 39 (2019)

    Google Scholar 

  5. 5.

    S F Tian and T T Zhang, Proc. Am. Math. Soc. 146, 1713 (2018)

    Article  Google Scholar 

  6. 6.

    W Q Peng, S F Tian and T T Zhang, Phys. Lett. A382, 2701 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    W Q Peng, S F Tian and T T Zhang, Comput. Math. Appl. 77, 770 (2019)

    MathSciNet  Article  Google Scholar 

  8. 8.

    J J Mao, S F Tian and T T Zhang, Int. J. Number. Method. H77, 715 (2019)

    Google Scholar 

  9. 9.

    W Q Peng, S F Tian and T T Zhang, J. Exploring. Front. Phys. 123, 5 (2018)

    Google Scholar 

  10. 10.

    X W Yan, X B Wang, S F Tian and T T Zhang, Int. J. Comput. Math. 96, 1839 (2018)

    Article  Google Scholar 

  11. 11.

    W Q Peng, S F Tian and T T Zhang, Appl. Math. Lett. 93, 1841 (2018)

    Google Scholar 

  12. 12.

    W Q Peng, S F Tian and T T Zhang, J. Front. Phys. 115, 1 (2016)

    Google Scholar 

  13. 13.

    D Yamigno Serge and K Timoleon Crepin, Nonlinear Dyn. 158, 312 (2018)

    Google Scholar 

  14. 14.

    W J Liu and B Tian, Opt. Quant. Electron. 43, 147 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    W Islam, M Younis and S T R Rizvi, Optik130, 562 (2017)

    ADS  Article  Google Scholar 

  16. 16.

    S F Tian, J. Differ. Equ. 262, 506 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    S F Tian, Proc. R. Soc. A472, 20160588 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    M Mirzazadeh, A H Arnous, M F Mahmood, E Zerrad and A Biswas, Nonlinear Dyn. 81, 277 (2015)

    Article  Google Scholar 

  19. 19.

    L L Feng, S F Tian, X-B Wang and T T Zhang, Appl. Math. Lett. 65, 90 (2017)

    MathSciNet  Article  Google Scholar 

  20. 20.

    J M Tu, S F Tian, M J Xu, P L Ma and T T Zhang, Comput. Math. Appl. 72, 2486 (2016)

    MathSciNet  Article  Google Scholar 

  21. 21.

    B Kilic and M Inc, Wave. Random. Complex25, 245 (2015)

    Article  Google Scholar 

  22. 22.

    M Inc, B Kilic and D Baleanu, Optik127, 1056 (2016)

    ADS  Article  Google Scholar 

  23. 23.

    B Younas, M Younis, M O Ahmed and S T R Rizvi, Mod. Phys. Lett. B32, 1850320-12 (2018)

    ADS  Article  Google Scholar 

  24. 24.

    K Ali, S T R Rizvi, A Khalil. M O Ahmed and M Younis, Optik172, 657 (2018)

    ADS  Article  Google Scholar 

  25. 25.

    S Ali, M Younis and S T R Rizvi, Optik50, 226 (2018)

    Google Scholar 

  26. 26.

    S T R Rizvi, K Ali, M Younis and A Bakir, PramanaJ. Phys. 88: 16 (2017)

    ADS  Article  Google Scholar 

  27. 27.

    A M Wazwaz, PramanaJ. Phys. 87: 68 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    B Kilic, M Inc and D Baleanu, Open. Phys. 14, 65 (2016)

    Article  Google Scholar 

  29. 29.

    M Inc, A I Aliyu and A Yusuf, Optik142, 509 (2017)

    ADS  Article  Google Scholar 

  30. 30.

    M M Al Qurashi, A Yusuf, A I Aliy and M Inc, Superlattice Microstruct. 105, 183 (2017)

    ADS  Article  Google Scholar 

  31. 31.

    M Inc, A I Aliyu, A Yusuf and D Baleanu, Superlattice Microstruct. 112, 628 (2017)

    ADS  Article  Google Scholar 

  32. 32.

    M Inc, E Ates and F Tchier, Nonlinear Dyn. 85, 1319 (2016)

    Article  Google Scholar 

  33. 33.

    O G Gaxiola and A Biswas, Opt. Quant. Electron. 50, 314 (2018)

    Article  Google Scholar 

  34. 34.

    A Biswas, M Ekici, A Sonmezoglu, A S Alshomrani, Q Zhou, S P Moshokoa and M Belic, Optik156, 999 (2018)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Younis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Younas, B., Younis, M. Chirped solitons in optical monomode fibres modelled with Chen–Lee–Liu equation. Pramana - J Phys 94, 3 (2020). https://doi.org/10.1007/s12043-019-1872-6

Download citation

Keywords

  • Chirped solitons
  • Chen–Lee–Liu equation
  • dual power law of nonlinearity

PACS Nos

  • 02.30.Jr
  • 05.45.Yv
  • 02.30.Ik