Skip to main content
Log in

Non-smooth bursting analysis of a Filippov-type system with multiple-frequency excitations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to explore the patterns of the bursting oscillations and the non-smooth dynamical behaviours in a Filippov-type system which possesses parametric and external periodic excitations. We take a coupled system consisting of Duffing and Van der Pol oscillators as an example. Owing to the existence of an order gap between the exciting frequency and the natural one, we can regard a single periodic excitation as a slow-varying parameter, and the other periodic excitations can be transformed as functions of the slow-varying parameter when the exciting frequency is far less than the natural one. By analysing the subsystems, we derive equilibrium branches and related bifurcations with the variation of the slow-varying parameter. Even though the equilibrium branches with two different frequencies of the parametric excitation have a similar structure, the tortuousness of the equilibrium branches is diverse, and the number of extreme points is changed from 6 to 10. Overlying the equilibrium branches with the transformed phase portrait and employing the evolutionary process of the limit cycle induced by the Hopf bifurcation, the critical conditions of the homoclinic bifurcation and multisliding bifurcation are derived. Numerical simulation verifies the results well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. E M Izhikevich, Biosystems 67, 95 (2002)

    Article  Google Scholar 

  2. Z D Zhang, B B Liu and Q S Bi, Nonlinear Dyn. 79, 195 (2015)

    Article  Google Scholar 

  3. H Simo and P Woafo, Mech. Res. Commun. 38, 537 (2011)

    Article  Google Scholar 

  4. S Adly, J. Math. Anal. Appl. 322, 1055 (2010)

    Article  MathSciNet  Google Scholar 

  5. X R Li, D H Zhang, F Zhang and P Zhang, Ecol. Indic. 83, 404 (2017)

    Article  Google Scholar 

  6. R Rocha, J Ruthiramoorthy and T Kathamuthu, Nonlinear Dyn. 88, 2577 (2017)

    Article  Google Scholar 

  7. R I Leine and D H V Campen, Eur. J. Mech. – A \(/\) Solids 25, 595 (2006)

    Article  ADS  Google Scholar 

  8. P Kowalczyk and M di Bernardo, Physica D 204, 204 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. M di Bernardo, A Nordmark and G Olivar, Physica D 237, 119 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. G V Savino and C M Formigli, Biosystems 97, 9 (2009)

    Article  Google Scholar 

  11. A Sherman, J Rinzel and J Keizer, J Biophys. 54, 411 (1988)

    Article  Google Scholar 

  12. E L Lameu, F S Borges, R R Borges, A M Batista, M S Baptista and R L Viana, Commun. Nonlinear Sci. 34, 45 (2016)

    Article  Google Scholar 

  13. X Y Hu, C G Liu, L Liu, J K Ni and S L Li, Nonlinear Dyn. 84, 2317 (2016)

    Article  Google Scholar 

  14. Q S Bi, R Zhang and Z D Zhang, Appl. Math. Comput. 243, 482 (2014)

    Google Scholar 

  15. G A Chumakov, N A Chumakova and E A Lashina, Chem. Eng. J. 282, 11 (2015)

    Article  Google Scholar 

  16. K Tsaneva-Atanasova, H M Osinga, T Riess and A Sherman, J. Theor. Biol. 264, 1133 (2010)

    Article  Google Scholar 

  17. M Alikhan, M Nag and S Poria, Pramana – J. Phys. 89: 19 (2017)

    Article  ADS  Google Scholar 

  18. J Rinzel, Bull. Math. Biol. 52, 5 (1990)

    Article  Google Scholar 

  19. X J Han, Q S Bi, P Ji and J Kurths, Phys. Rev. E 92, 012911 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Z D Zhang, Y Liu, S Z Zhang and Q S Bi, Acta Phys. Sin. 66, 020501 (2016)

    Google Scholar 

  21. E M Izhikevich, Int. J. Bifurc. Chaos 10, 1171 (2000)

    Article  MathSciNet  Google Scholar 

  22. T Y Wu, X K Chen, Z D Zhang, X F Zhang and Q S Bi, Acta Phys. Sin. 66, 110501 (2017)

    Google Scholar 

  23. Q S Bi and X K Chen, Nonlinear Dyn. 85, 2233 (2016)

    Article  Google Scholar 

  24. B Pal, D Dutta and S Poria, Pramana – J. Phys. 89: 32 (2017)

    Article  ADS  Google Scholar 

  25. X K Chen, S L Li, Z D Zhang and Q S Bi, Sci. China Tech. Sci. 60, 289 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11632008) and the National Natural Science Foundation of China (Grant No. 11472116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengdi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Zhang, Z., Peng, M. et al. Non-smooth bursting analysis of a Filippov-type system with multiple-frequency excitations. Pramana - J Phys 91, 72 (2018). https://doi.org/10.1007/s12043-018-1644-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1644-8

Keywords

PACS Nos

Navigation