Advertisement

Pramana

, 90:56 | Cite as

XUV pulse effect on signal modulations of harmonic spectra from H\(_{2}^{+}\) and T\(_{2}^{+}\)

  • Liqiang Feng
  • Hang Liu
  • Henry J Kapteyn
  • April Y Feng
Article
  • 48 Downloads

Abstract

The effects of signal modulations on the molecular high-order harmonic generations in \(\hbox {H}_{2}^{+ }\) and \(\hbox {T}_{2}^{+}\) have been theoretically investigated. It is found that with the introduction of the XUV pulse, due to the absorption of the extra XUV photons in the recombination process, multiplateaus on the harmonic spectra, separated by the XUV photon energy can be found. Moreover, this multiplateau structure is insensitive to the wavelength of the XUV pulse. In shorter pulse duration, the intensities of the multiplateaus from \(\hbox {H}_{2}^{+}\) are higher than those from \(\hbox {T}_{2}^{+}\); while in longer pulse duration, the opposite results can be found. Finally, by changing the delay time of the XUV pulse, the signal modulations (including the amplitude and the frequency modulations) of the multiplateaus can be controlled.

Keywords

Molecular high-order harmonic generation amplitude modulation of harmonics frequency modulation of harmonics multiplateau structure XUV pulse 

PACS Nos

42.65.Ky 42.65.Re 32.80.Fb 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11504151) and the Doctoral Scientific Research Foundation of Liaoning Province (No. 201501123).

References

  1. 1.
    F Krausz and M Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    K P Singh, Pramana – J. Phys. 82, 87 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    A Kumar, R B Bhatt, P G Behere, M Afzal, A Kumar, J P Nilaya and D J Biswas, Pramana – J. Phys. 82, 237 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    L Q Feng, Y B Duan and T S Chu, Ann. Phys. (Berlin) 525, 107 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    K J Yuan and A D Bandrauk, Phys. Rev. Lett. 110, 023003 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    E Goulielmakis, M Schultze, M Hofstetter, V S Yakovlev, J Gagnon, M Uiberacker, A L Aquila, E M Gullikson, D T Attwood, R Kienberger, F Krausz and U Kleineberg, Science 320, 1614 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M F Ciappina, J A Pérez-Hernández, A S Landsman, W Okell, S Zherebtsov, B Förg, J Schötz, J L Seiffert, T Fennel, T Shaaran, T Zimmermann, A Chacón, R Guichard, A Zaïr, J W G Tisch, J P Marangos, T Witting, A Braun, S A Maier, L Roso, M Krüger, P Hommelhoff, M F Kling, F Krausz and M Lewenstein, Rep. Prog. Phys. 80, 054401 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    L Q Feng and T S Chu, Phys. Rev. A 84, 053853 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    L Q Feng, Phys. Rev. A 92, 053832 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    P B Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    T Zuo, S Chelkowski and A D Bandrauk, Phys. Rev. A 48, 3837 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    H Liu, W L Li and L Q Feng, Chem. Phys. Lett. 676, 118 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    L Q Feng and H Liu, Mol. Phys. 115, 1562 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    S Chelkowski, C Foisy and A D Bandrauk, Phys. Rev. A 57, 1176 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    X B Bian and A D Bandrauk, Phys. Rev. Lett. 105, 093903 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    L Q Feng and T S Chu, Commun. Comput. Chem. 1, 52 (2013)ADSGoogle Scholar
  17. 17.
    J Zhang, X F Pan, C L Xia, D Du, T T Xu, J Guo and X S Liu, Laser Phys. Lett. 13, 075302 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    J Zhang, X L Ge, T Wang, T T Xu, J Guo and X S Liu, Phys. Rev. A 92, 013418 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    L Q Feng and H Liu, Opt. Commun. 389, 144 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    L Q Feng, W L Li and H Liu, Chin. Phys. B 26, 044206 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    L Q Feng, W L Li and H Liu, Ann. Phys. (Berlin) 529, 1700093 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    M Lein, N Hay, R Velotta, J P Marangos and P L Knight, Phys. Rev. A 66, 023805 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    M Lein, Phys. Rev. Lett. 94, 053004 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    C Kan, C E Capjack, R Rankin and N H Burnett, Phys. Rev. A 52, R4336 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    J B Watson, A Sanpera and K Burnett, Phys. Rev. A 51, 1458 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    H J Shin, D G Lee, Y H Cha, K H Hong and C H Nam, Phys. Rev. Lett. 83, 2544 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    X B Bian and A D Bandrauk, Phys. Rev. A 83, 041403 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    X B Bian and A D Bandrauk, Phys. Rev. Lett. 113, 193901 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    M Vafaee, H Ahmadi and A Maghari, J. Phys. B: At. Mol. Opt. Phys. 50, 025601 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    M Z Li, G R Jia and X B Bian, J. Chem. Phys. 146, 084305 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    J Zhang, X F Pan, T T Xu and X S Liu, Laser Phys. Lett. 14, 055302 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    K Ishikawa, Phys. Rev. Lett. 91, 043002 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    P C Li, X X Zhou, G L Wang and Z X Zhao, Phys. Rev. A 80, 053825 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    H C Du, H Q Wang and B T Hu, Phys. Rev. A 81, 063813 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    M Lewenstein, K C Kulander, K J Schafer and P H Bucksbaum, Phys. Rev. A 51, 1495 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    M Lewenstein, P Balcou, M Y Ivanov, A L’Huillier and P B Corkum, Phys. Rev. A 49, 2117 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    N Suárez, A Chacón, M F Ciappina, B Wolter, J Biegert and M Lewenstein, Phys. Rev. A 94, 043423 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    N Suárez, A Chacón, M F Ciappina, J Biegert and M Lewenstein, Phys. Rev. A 92, 063421 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M F Ciappina, C C Chirilǎ and M Lein, Phys. Rev. A 75, 043405 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    C C Chirilǎ and M Lein, Phys. Rev. A 77, 043403 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    C C Chirilǎ and M Lein, Phys. Rev. A 80, 013405 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    N Suárez, A Chacón, J A Pérez-Hernández, J Biegert, M Lewenstein and M F Ciappina, Phys. Rev. A 95, 033415 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    R F Lu, P Y Zhang and K L Han, Phys. Rev. E 77, 066701 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    J Hu, K L Han and G Z He, Phys. Rev. Lett. 95, 123001 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    C L Xia and X Y Miao, J. At. Mol. Sci. 7, 17 (2016)Google Scholar
  46. 46.
    L Q Feng and T S Chu, Phys. Plasmas 24, 103121 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    C Yu, S C Jiang, X Cao, G L Yuan, T Wu, L H Bai and R F Lu, Opt. Express 24, 19736 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    K Burnett, V C Reed, J Cooper and P L Knight, Phys. Rev. A 45, 3347 (1992)ADSCrossRefGoogle Scholar
  49. 49.
    P Antoine, B Piraux and A Maquet, Phys. Rev. A 51, R1750 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    L Q Feng and T S Chu, J. Chem. Phys. 136, 054102 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Laboratory of Molecular Reaction DynamicsLiaoning University of TechnologyJinzhouChina
  2. 2.Laboratory of Modern PhysicsLiaoning University of TechnologyJinzhouChina
  3. 3.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  4. 4.Institute of PhysicsTarbiat Modares UniversityTehranIran
  5. 5.Photonics InstituteVienna University of TechnologyViennaAustria

Personalised recommendations