Skip to main content
Log in

Exciton binding energy in a pyramidal quantum dot

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effects of spatially dependent effective mass, non-parabolicity of the conduction band and dielectric screening function on exciton binding energy in a pyramid-shaped quantum dot of GaAs have been investigated by variational method as a function of base width of the pyramid. We have assumed that the pyramid has a square base with area \(a\times a\) and height of the pyramid \(H=a/2\). The trial wave function of the exciton has been chosen according to the even mirror boundary condition, i.e. the wave function of the exciton at the boundary could be non-zero. The results show that (i) the non-parabolicity of the conduction band affects the light hole (lh) and heavy hole (hh) excitons to be more bound than that with parabolicity of the conduction band, (ii) the dielectric screening function (DSF) affects the lh and hh excitons to be more bound than that without the DSF and (iii) the spatially dependent effective mass (SDEM) affects the lh and hh excitons to be less bound than that without the SDEM. The combined effects of DSF and SDEM on exciton binding energy have also been calculated. The results are compared with those available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S Mosleni-Tabrizi, Eigenstate calculations for multidimensional nanostructures: Quantum wells, wires and dot (VDM Verlag Dr. Muller Aktiengesellschaft & Co.KG, Germany, 2008)

    Google Scholar 

  2. E Kasapoglu and I Sokmen, Physica E  27, 198 (2005)

    Article  ADS  Google Scholar 

  3. S Wu, Physica B  406, 4634 (2011)

    Article  ADS  Google Scholar 

  4. N Elmeshad, H Abdelhamid, H Hassanein, S Abdelmota and S Said, Chin. J. Phys.  47, 92 (2009)

    Google Scholar 

  5. Z Xiao, J. Appl. Phys.  86, 4509 (1999)

    Article  ADS  Google Scholar 

  6. A Taqi and J Diouri, Semicond. Phys. Quantum Electron. Optoelectron.  15, 365 (2012)

    Article  Google Scholar 

  7. B Sukumar and K Navaneethakrishnan, Solid State Commun.  76, 561 (1990)

    Article  ADS  Google Scholar 

  8. H Akbas, S Aktas, S E Okan and M Ulas, Solid State Commun.  23, 113 (1998)

    Google Scholar 

  9. Z Y Deng, J K Guo and T R Lai, Phys. Rev. B  50, 5736 (1994)

    Article  ADS  Google Scholar 

  10. X H Qi, X J Kong and J J Liu, Phys. Rev. B  58, 10578 (1998)

    Article  ADS  Google Scholar 

  11. A J Peter and K Navaneethakrishnan, Physica E  40, 2747 (2008)

    Article  ADS  Google Scholar 

  12. S Nomura and T Kobayashi, Solid State Commun.  78, 677 (1991)

    Article  ADS  Google Scholar 

  13. N Schildermans, M Hayne, V V Moshchalkov, A Rastelli and O G Schmidt, Phys. Rev. B  72, 115312 (2005)

    Article  ADS  Google Scholar 

  14. Y Sidor, B Partoens, F M Peeters, J Maes, M Hayne, D Fuster, Y Gonzalez, L Gonzalez and V V Moshchalkov, Phys. Rev. B  76, 195320 (2007)

    Article  ADS  Google Scholar 

  15. L C Andreani and A Pasquarello, Phys. Rev. B  42, 8928 (1990)

    Article  ADS  Google Scholar 

  16. U Ekenberg and M Altarelli, Phys. Rev. B  35, 7585 (1987)

    Article  ADS  Google Scholar 

  17. V Lozovski and V Piatnytsia, J. Comput. Theor. Nanosci.  8, 2335 (2011)

    Article  Google Scholar 

  18. Y Vorobiev, V Vieira, P Ribeiro, V Gorley, P Horley, J G Hernandez and T Torchynska, Recent Researches in Communications, Automation, Signal Processing, Nanotechnology, Astronomy and Nuclear Physics, 127 (WSEAS Press, 2011)

  19. Yu V Vorobiev, T V Torchynska and P P Horley, Physica E  51, 42 (2013)

    Article  ADS  Google Scholar 

  20. M Grundmann, O Stier and D Bimberg, Phys. Rev. B  52, 11969 (1995)

    Article  ADS  Google Scholar 

  21. M A Borji, A Reyahi, E Rajaei and M Ghahremani, Pramana – J. Phys., https://doi.org/10.1007/s12043-017-1424-x (2017)

  22. K Jayakumar, S Balasubramanian and M Tomak, Phys. Rev. B  33, 4002 (1986)

    Article  ADS  Google Scholar 

  23. M Arulmozhi and S Balasubramanian, Phys. Rev. B  51, 2592 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the University Grants Commission (UGC), New Delhi, India, for the financial support through Major Research Project (No.F.42-836 / 2013(SR) dated 22.3.2013) and the authorities of Jayaraj Annapackiam College for Women (Autonomous), Periyakulam, Theni District, Tamil Nadu, India, for the encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Arulmozhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anitha, A., Arulmozhi, M. Exciton binding energy in a pyramidal quantum dot. Pramana - J Phys 90, 57 (2018). https://doi.org/10.1007/s12043-018-1548-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1548-7

Keywords

PACS Nos

Navigation