Skip to main content
Log in

Space-charge solitary waves and double layers in n-type compensated semiconductor quantum plasma

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Using quantum hydrodynamic (QHD) model and standard reductive perturbation method, we have investigated the formation and characteristics of space-charge solitary waves and double layers in n-type compensated drifting semiconductor plasma with varying doping profiles. Through numerical analysis, it is shown that the structures of space-charge solitary waves and double layers depend significantly on electron drift and compensation parameter which measures a comparative proportion of the donor, acceptor and intrinsic ion concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O A Egorov, D V Skryabin, A V Yulin and F Lederer, Phys. Rev. Lett.  102, 153904 (2009)

    Article  ADS  Google Scholar 

  2. K Kumabe and H Kanbe, Int. J. Electron.  58, 587 (1985)

    Article  Google Scholar 

  3. A G Barrientos and V Palankovskib, Mater. Sci. Engng B  176, 1368 (2011)

    Article  Google Scholar 

  4. L F Mollenauer, R H Stolen and J P Gordon, Phys. Rev. Lett.  45, 1095 (1980)

    Article  ADS  Google Scholar 

  5. B A Kalinikos, N G Kovshikov and A N Slavin, JETP Lett.  38, 413 (1983)

    ADS  Google Scholar 

  6. B A Kalinikos, N G Kovshikov and A N Slavin, Sov. Phys. JETP  67, 303 (1988)

    Google Scholar 

  7. S Guha and P K Sen, J. Appl. Phys.  50, 5387 (1979)

    Article  ADS  Google Scholar 

  8. G Sharma and S Ghosh, Eur. Phys. J. D  11, 301 (2000)

    Article  ADS  Google Scholar 

  9. C M Cuesta and C Schmeiser, SIAM J. Appl. Math.  68, 1423 (2008)

  10. M Pawlik and G Rowlands, J. Phys. C: Solid State Phys.  8, 1189 (1975)

    Article  ADS  Google Scholar 

  11. L Bonilla, SIAM J. Appl. Math.  51, 727 (1991)

  12. G Couton, H Maillotte and M Chauvet, J. Opt. B: Quantum Semiclass. Opt.  6, S223 (2004)

  13. V I Berezhiani, V Skarka and R Miklaszewski, Phys. Rev. B  57, 6251 (1998)

    Article  ADS  Google Scholar 

  14. E Pic and M Ligeon, Phys. Status Solidi A  23, 409 (1974)

  15. C L Gardner and C Ringhofer, VLSI Des.  8, 143 (1998)

    Article  Google Scholar 

  16. M M Murname, H C Kapteyn, M D Rosen and R W Falcone,Science  251, 531 (1991)

    Article  ADS  Google Scholar 

  17. A Amo, J Lefrère, S Pigeon, C Adrados, C Ciuti, I Carusotto, R Houdré, E Giacobino and A Bramati, Nat. Phys.  5, 805 (2009)

    Article  Google Scholar 

  18. A A Barybin and A I Mikhailov, Tech. Phys.  48, 761 (2003)

    Article  Google Scholar 

  19. M R Amin, Phys. Plasmas  22, 032303 (2015)

    Article  ADS  Google Scholar 

  20. M R Amin, J. Appl. Phys.  107, 023307 (2010)

    Article  ADS  Google Scholar 

  21. A H W Beck, Space–charge waves and slow electromagnetic waves (Pergamon, New York, 1958)

    MATH  Google Scholar 

  22. R H Dean, Electron. Lett.  6, 775 (1970)

    Article  Google Scholar 

  23. V Grimalsky, E Gutierrez, A Garcia and S Koshevaya, Microelectron. J. 37, 395 (2006)

  24. S Banerjee and B Ghosh, Ind. J. Phys.  91(4), 461 (2017)

    Article  Google Scholar 

  25. K Saeki, S Iizuka and N Sato, Phys. Rev. Lett.  45, 1853 (1980)

    Article  ADS  Google Scholar 

  26. D E Baldwin and B G Logan, Phys. Rev. Lett.  43, 1318 (1979)

    Article  ADS  Google Scholar 

  27. T Cho, M Hirata, J Kohagura, K Yatsu, T Tamano and R T Snider, Rev. Sci. Instrum.  66, 540 (1995)

    Article  ADS  Google Scholar 

  28. R Minami, T Imai, T Kariya, T Numakura, T Eguchi, R Kawarasaki, K Nakazawa, T Kato, F Sato, H Nanzai, M Uehara, Y Endo and M Ichimura, Rev. Sci. Instrum.  85, 11D807 (2014)

    Article  Google Scholar 

  29. R Minami, T Imai, T Kariya, T Numakura, M Uehara, K Tsumura, Y Ebashi, S Kajino, Y Endo and Y Nakashima, Rev. Sci. Instrum.  87, 11E306 (2016)

    Article  Google Scholar 

  30. G Manfredi and F Haas, Phys. Rev. B  64, 075316 (2001)

    Article  ADS  Google Scholar 

  31. B Xie and K He, Phys. Plasmas  6, 3808 (1999)

    Article  ADS  Google Scholar 

  32. S G Tagare, Phys. Plasmas  4, 3167 (1997)

    Article  ADS  Google Scholar 

  33. S R Sreenivasan and M B Schroeder, Plasma Phys.  25, 925 (1983)

    Article  ADS  Google Scholar 

  34. M Uehara, K K Sakane, H S Maciel and W I Urruchi, Am. F Phys.  68, 450 (2000)

    Article  ADS  Google Scholar 

  35. W I Urruchi, H S Maciel, G Petraconi and C Otani, J. Tech. Phys.  40, 419 (1999)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for giving some constructive suggestions which improved the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Ghosh, B. Space-charge solitary waves and double layers in n-type compensated semiconductor quantum plasma. Pramana - J Phys 90, 42 (2018). https://doi.org/10.1007/s12043-018-1531-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1531-3

Keywords

PACS Nos

Navigation