Advertisement

Pramana

, 90:34 | Cite as

Travelling wave solutions of (2\(+\)1)-dimensional generalised time-fractional Hirota equation

Article
  • 84 Downloads

Abstract

In this article, we have developed new exact analytical solutions of a nonlinear evolution equation that appear in mathematical physics, a \((2+1)\)-dimensional generalised time-fractional Hirota equation, which describes the wave propagation in an erbium-doped nonlinear fibre with higher-order dispersion. By virtue of the tanh-expansion and complete discrimination system by means of fractional complex transform, travelling wave solutions are derived. Wave interaction for the wave propagation strength and angle of field quantity under the long wave limit are analysed: Bell-shape solitons are found and it is found that the complex transform coefficient in the system affects the direction of the wave propagation, patterns of the soliton interaction, distance and direction.

Keywords

Time-fractional Hirota equation fractional complex transform complete discrimination system tanh-expansion travelling wave 

PACS Nos

02.30.Jr 05.45.Yv 04.20.Jb 

References

  1. 1.
    R Hirota, J. Math. Phys. 14, 805 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    M Eslami, Optik 126(23), 3987 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    M Eslami, Optik 126(13), 1312 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    M Eslami, Nonlinear Dyn. 85(2), 813 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M Eslami and M Mirzazadeh, Nonlinear Dyn. 83(1–2), 731 (2016)CrossRefGoogle Scholar
  6. 6.
    M Eslami, A Neyrame and M Ebrahimi, J. King Saud Univ. Sci. 24(1), 69 (2012)CrossRefGoogle Scholar
  7. 7.
    M Eslami and M Mirzazadeh, Rep. Math. Phys. 73(1), 77 (2014)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A Neirameh and M Eslami, Scientia Iranica 24(2), 715 (2017)CrossRefGoogle Scholar
  9. 9.
    M Ekici, M Mirzazadeh and M Eslami, Nonlinear Dyn. 84(2), 669 (2016)CrossRefGoogle Scholar
  10. 10.
    M Mirzazadeh, M Eslami and A H Arnous, Eur. Phys. J. Plus 130(1), 1 (2015)CrossRefGoogle Scholar
  11. 11.
    A Biswas, M Mirzazadeh, M Eslami, D Milovic and M Belic, Frequenz 68(11–12), 525 (2014)ADSGoogle Scholar
  12. 12.
    M Eslami and M Mirzazadeh, Ocean Engng 83, 133 (2014)CrossRefGoogle Scholar
  13. 13.
    M Eslami and A Neirameh, Eur. Phys. J. Plus 129(4), 54 (2014)CrossRefGoogle Scholar
  14. 14.
    M Mirzazadeh, M Eslami and A Biswas, Comput. Appl. Math. 33(3), 831 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M Eslami, M A Mirzazadeh and A Neirameh, Pramana – J. Phys. 84, 3 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    K A Gepreel, T A Nofal and N S Al-Sayali, IAENG Eng. Lett. 24, 274 (2016)Google Scholar
  17. 17.
    X Huang, Phys. Lett. A 380, 2136 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    T Jia, Y Chai and H Hao, Superlatt. Microstruc. 105, 172 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    S T Demiray, Y Pandir and H Bulut, Optik 127, 1848 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Y Wu, X Geng, X Hu and S Zhu, Phys. Lett. A 255, 259 (1999)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    X Xin, Y Liu and X Liu, Appl. Math. Lett. 55, 63 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J I Kanel and M Kirane, Commun. Appl. Anal. 4, 385 (2000)MathSciNetGoogle Scholar
  23. 23.
    J H He, Comput. Meth. Appl. Mech. Engng 167, 57 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    J H He, Bull. Sci. Tech. Soc. 15, 86 (1999)MathSciNetGoogle Scholar
  25. 25.
    R Gorenflo, F Mainardi, E Scalas and M Raberto, Mathematical finance (Konstanz, 2000), Trends Math. 171 (2001)Google Scholar
  26. 26.
    R Hilfer, Applications of fractional calculus in physics (World Scientific, Singapore, 2000)CrossRefMATHGoogle Scholar
  27. 27.
    R Metzler and J Klafter, J. Phys. A 37, R161 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Y A Rossikhin and M V Shitikova, Acta Mech. 120, 109 (1997)MathSciNetCrossRefGoogle Scholar
  29. 29.
    M Kirane and S A Malik, Nonlinear Anal. 73, 3723 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    T Bakkyaraj and R Sahadevan, Nonlinear Dyn. 77, 1309 (2014)CrossRefGoogle Scholar
  31. 31.
    L Cui, L Yan and Y Liu, Thermal. Sci. 19, 1173 (2015)CrossRefGoogle Scholar
  32. 32.
    Z Z Ganji, D D Ganji and Y Rostamiyan, Appl. Math. Model. 33, 3107 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    M Merdan, Proc. Rom. Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 16, 3 (2015)MathSciNetGoogle Scholar
  34. 34.
    M Merdan, A Gökdogan, A Yildirim and S Mohyud-Din, Int. J. Numer. Methods Heat Fluid Flow 23, 927 (2013)CrossRefGoogle Scholar
  35. 35.
    M Mirzazadeh, Pramana – J. Phys. 85, 17 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    M Eslami, B F Vajargah, M Mirzazadeh and A Biswas, Indian J. Phys. 88(2), 177 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    M Ekici, M Mirzazadeh, M Eslami, Q Zhou and S P Moshokoa, Optik 127(22), 10659 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    N Taghizadeh, M Mirzazadeh, M Rahimian and M Akbari, Ain Shams Engng J. 4(4), 897 (2013)CrossRefGoogle Scholar
  39. 39.
    M Mirzazadeh, M Eslami and A Biswas, Pramana – J. Phys. 82(3), 465 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    A A Kilbas, H M Srivastava and J J Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies (Elsevier, Amsterdam, The Netherlands, 2006) Vol. 204Google Scholar
  41. 41.
    T Odzijewicz, A B Malinowska and D F M Torres, Nonlinear Anal. 75, 1507 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    I Podlubny, Fractional differential equations (Academic Press, San Diego, 1999)MATHGoogle Scholar
  43. 43.
    E G Fan, Phys. Lett. A 277, 212 (2000)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    A M Wazwaz, Chaos Solitons Fractals 25, 55 (2005)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    J H He, S K Elagan and Z B Li, Phys. Lett. A 376, 257 (2012)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Z B Li and J H He, Math. Comput. Appl. 15, 97 (2011)Google Scholar
  47. 47.
    W H Su, X J Yang, H Jafari and D Baleanu, Adv. Differ. Equ. 2013, 97 (2013)CrossRefGoogle Scholar
  48. 48.
    E M Zayed, Y A Amer and R M Shohib, J. Assoc. Arab Univ. Basic Appl. Sci. 19, 59 (2016)Google Scholar
  49. 49.
    C S Liu, Comput. Phys. Commun. 181, 317 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    C S Liu, Phys. arXiv:nlin/0609058
  51. 51.
    L Yang and Z B Ceng, Sci. China Ser. E 39, 628 (1996)MathSciNetGoogle Scholar
  52. 52.
    K A Gepreel, Adv. Differ. Equ. 2014, 286 (2014)CrossRefGoogle Scholar
  53. 53.
    A Z Fino and M Kirane, Quart. Appl. Math. 70, 133 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsHexi UniversityZhangyeChina

Personalised recommendations