Skip to main content
Log in

Experimental studies of the quantum chromodynamics phase diagram at the STAR experiment

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We review the STAR experiment’s results to date from the Beam Energy Scan (BES) at Brookhaven’s Relativistic Heavy Ion Collider, and outline future plans and prospects in this area. BES Phase-I is based on Au + Au data taken in 2010 and 2011 at \(\sqrt {s_{NN}}= 7.7\), 11.5, 19.6, 27 and 39 GeV, and when interpreted in conjunction with the large datasets available at 62.4 and 200 GeV, permits an initial exploration of the phase diagram of quantum chromodynamics (QCD) matter. The three goals of BES Phase-I are as follows: (1) a search for turn-off of the promising signatures of quark gluon plasma (QGP) already reported at the top RHIC energies; (2) a search for evidence of a possible first-order phase transition such as a signature of softening of the QCD equation of state (EoS); (3) a search for a critical end point as expected in a scenario where there is a cross-over transition from hadronic matter to QGP at the highest RHIC energies, but a first-order phase transition at lower energies with finite net-baryon density. We summarize several analyses of BES data from 2010 and 2011 that are either published or submitted, as well as several more that have been reported at meetings in preliminary forms. The physics interpretation of BES Phase-I measurements is frequently limited by the increasing statistical error bars as the beam energy decreases, and the planned BES Phase-II will have much improved capabilities in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. S A Bass et al, White Paper Hot & Dense QCD Matter, submitted to 2012 US Nuclear Science Advisory Committee, http://www.bnl.gov/npp/docs/Bass_RHI_WP_final.pdf

  2. STAR Collaboration: J Adams et al, Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  3. PHENIX Collaboration: K Adcox et al, Nucl. Phys. A 757, 184 (2005)

  4. BRAHMS Collaboration: I Arsene et al, Nucl. Phys. A 757, 1 (2005)

    Article  Google Scholar 

  5. PHOBOS Collaboration: B B Back et al, Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  6. F Karsch et al, Nucl. Phys. Proc. Suppl. 129, 614 (2004)

    Article  ADS  Google Scholar 

  7. Y Aoki, G Endroli, Z Fodor, S D Katz and K K Szabo, Nature 443, 675 (2006)

    Article  ADS  Google Scholar 

  8. M Cheng et al, Phys. Rev. D 79, 074505 (2009), and references therein

    Article  ADS  Google Scholar 

  9. S Ejiri, Phys. Rev. D 78, 074507 (2008)

    Article  ADS  Google Scholar 

  10. E S Bowman and J I Kapusta, Phys. Rev. C 79, 015202 (2009)

    Article  ADS  Google Scholar 

  11. M A Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004); Int. J. Mod. Phys. A 20, 4387 (2005), [hep-ph/0402115]

  12. STAR Collaboration: M M Aggarwal et al, arXiv:1007.2613 (2010)

  13. STAR Collaboration: L Kumar, Nucl. Phys. A 862, 125 (2011)

  14. B Mohanty, Nucl. Phys. A 830, 899C (2009)

    Article  ADS  Google Scholar 

  15. STAR Collaboration: B I Abelev et al, Phys. Rev. C 81, 024911 (2010)

  16. STAR Collaboration: L Kumar, J. Phys. G: Nucl. Part. Phys. 38, 124145 (2011)

  17. STAR Collaboration: X Zhu, Acta Phys. Polon. B Proc. Suppl. 5, 213 (2012)

    Article  Google Scholar 

  18. A Andronic, F Beutler, P Braun-Munzinger, K Redlich and J Stachel, Phys. Lett. B 675, 312 (2009) arXiv:0804.4132

    Article  ADS  Google Scholar 

  19. S Wheaton and J Cleymans, Comput. Phys. Commun. 180, 84 (2009), hep-ph/0407174

    Article  ADS  Google Scholar 

  20. STAR Collaboration: L Kumar, Nucl. Phys. A 904–905, 256c (2013), arXiv:1211.1350

  21. STAR Collaboration: S Das, Nucl. Phys. A 904–905, 891c (2013), arXiv:1210.6099

  22. A Andronic, P Braun-Munzinger and J Stachel, Nucl. Phys. A 834, 237C (2010), arXiv:0911.4931

    Article  ADS  Google Scholar 

  23. J Cleymans, H Oeschler, K Redlich and S Wheaton, Phys. Rev. C 73, 034905 (2006) hep-ph/0511094

    Article  ADS  Google Scholar 

  24. J Brachmann, S Soff, A Dumitru, H Stoecker, J A Maruhn, W Greiner, L V Bravina and D H Rischke, Phys. Rev. C 61, 024909 (2000) nucl-th/9908010

    Article  ADS  Google Scholar 

  25. L P Csernai and D Rohrich, Phys. Lett. B 458, 454 (1999) nucl-th/9908034

    Article  ADS  Google Scholar 

  26. D H Rischke et al, Heavy Ion Phys. 1, 309 (1995)

    Google Scholar 

  27. H Stoecker, Nucl. Phys. A 750, 121 (2005) nucl-th/0406018

    Article  ADS  Google Scholar 

  28. M Bleicher, E Zabrodin, C Spieles, S A Bass, C Ernst, S Soff, L Bravina, M Belkacem, et al, J. Phys. G 25, 1859 (1999) hep-ph/9909407

    Article  ADS  Google Scholar 

  29. STAR Collaboration: Y Pandit, Nucl. Phys. A 904–905, 357c (2013), arXiv: 1210.5315

    Article  Google Scholar 

  30. STAR Collaboration: L Adamczyk et al, arXiv:1401.3043 [nucl-ex]

  31. STAR Collaboration: J Adams et al, Phys. Rev. Lett. 95, 122301 (2005)

  32. STAR Collaboration: L Adamczyk et al, Phys. Rev. Lett. 110, 0142301 (2013)

  33. J C Dunlop, M A Lisa and P Sorensen, Phys. Rev. C 84, 044914 (2011), arXiv:1107.3078

    Article  ADS  Google Scholar 

  34. J Xu, L -W Chen, C M Ko and Z -W Lin, Phys. Rev. C 85, 041901 (2012), arXiv:1201.3391

    Article  ADS  Google Scholar 

  35. B Mohanty and N Xu, J. Phys. G 36, 064022 (2009)

    Article  ADS  Google Scholar 

  36. D Kharzeev, Phys. Lett. B 633, 260 (2006)

    Article  ADS  Google Scholar 

  37. D E Kharzeev, L D McLerran and H J Warringa, Nucl. Phys. A 803, 227 (2008)

    Article  ADS  Google Scholar 

  38. K Fukushima, D E Kharzeev and H J Warringa, Phys. Rev. D 78, 074033 (2008), arXiv:0808.3382

    Article  ADS  Google Scholar 

  39. P V Buividovich, M N Chernodub, E V Luschevskaya and M I Polikarpov, Phys. Rev. D 80, 054503 (2009)

    Article  ADS  Google Scholar 

  40. M Abramczyk, T Blum, G Petropoulos and R Zhou, PoS LAT 2009, 181 (2009)

    Google Scholar 

  41. P V Buividovich, E V Lushchevskaya, M I Polikarpov and M N Chernodub, JETP Lett. 90, 412 (2009)

    Article  ADS  Google Scholar 

  42. STAR Collaboration: B I Abelev et al, Phys. Rev. Lett. 103, 251601 (2009)

  43. STAR Collaboration: B I Abelev et al, Phys. Rev. C 81, 054908 (2010)

  44. S Pratt, Phys. Rev. C 83, 014913 (2011) S Pratt, S Schlichting and S Gavin, Phys. Rev. C 84, 024909 (2011)

  45. STAR Collaboration: G Wang, Nucl. Phys. A 904–905, 248c (2013)

  46. ALICE Collaboration: B Abelev et al, Phys. Rev. Lett. 110, 012301 (2013), arXiv:1207.0900

  47. STAR Collaboration: M A C Lamont, J. Phys. Conf. Ser. 50, 192 (2006)

  48. STAR Collaboration: E Sangaline, Nucl. Phys. A 904–905, 771c (2013)

  49. J W Cronin, H J Frisch, M J Shochet, J P Boymond, R Mermod, P A Piroue and R L Sumner, Phys. Rev. D 11, 3105 (1975)

    Article  ADS  Google Scholar 

  50. STAR Collaboration: X Zhang, Nucl. Phys. A 904–905, 543c (2013)

  51. R C Hwa and C B Yang, Phys. Rev. C 75, 054904 (2007) nucl-th/0602024

    Article  ADS  Google Scholar 

  52. R C Hwa and C B Yang, Phys. Rev. C 66, 025205 (2002) hep-ph/0204289

    Article  ADS  Google Scholar 

  53. STAR Collaboration: M M Aggarwal et al, Phys. Rev. Lett. 105, 022302 (2010), arXiv:1004.4959

  54. S Gupta, X Luo, B Mohanty, H G Ritter and N Xu, Science 332, 1525 (2011), arXiv:1105.3934

    Article  ADS  Google Scholar 

  55. F Karsch and K Redlich, Phys. Lett. B 695, 136 (2011)

    Article  ADS  Google Scholar 

  56. M A Stephanov, Phys. Rev. Lett. 102, 032301 (2009)

    Article  ADS  Google Scholar 

  57. M A Stephanov, Phys. Rev. Lett. 107, 052301 (2011)

    Article  ADS  Google Scholar 

  58. R V Gavai and S Gupta, Phys. Lett. B 696, 459 (2011), arXiv:1001.3796

    Article  ADS  Google Scholar 

  59. M Cheng, P Hendge, C Jung, F Karsch, O Kaczmarek, E Laermann, R D Mawhinney, C Miao, P Petreczky, C Schmidt and W Soeldner, Phys. Rev. D 79, 074505 (2009), arXiv:0811.1006

    Article  ADS  Google Scholar 

  60. STAR Collaboration: X Luo, Nucl. Phys. A 904–905, 911c (2013)

  61. STAR Collaboration: L Adamczyk et al, Phys. Rev. Lett. 112, 032302 (2014), arXiv:1309.5681[nucl-ex]

  62. A Fedotov and W Fischer, Private communications, 2012

  63. A Fedotov and M Blaskiewicz, BNL CAD Tech Note: C-A /AP/449 (February 10, 2012)

  64. STAR Collaboration: B Huang, Nucl. Phys. A 904–905, 565c (2013)

  65. STAR Collaboration: Y Zhu, Nucl. Phys. A 904–905, 551c (2013)

  66. STAR Collaboration: Y Xu, poster “Inner TPC Upgrade at STAR”, 2013 RHIC & AGS Annual Users Meeting, BNL, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LOKESH KUMAR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KUMAR, L., KEANE, D. Experimental studies of the quantum chromodynamics phase diagram at the STAR experiment. Pramana - J Phys 84, 773–786 (2015). https://doi.org/10.1007/s12043-015-0969-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-0969-9

Keywords

PACS Nos

Navigation