Skip to main content
Log in

The origin of the strongest magnetic fields in dwarfs

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

White dwarfs have frozen in magnetic fields ranging from below the measurable limit of about 3×103 to 109 G. White dwarfs with surface magnetic fields in excess of 1 MG are found as isolated single stars and relatively more often in magnetic cataclysmic variables. Some 1253 white dwarfs with a detached low-mass main-sequence companion have been identified in the Sloan Digital Sky Survey (SDSS) but none of these shows sufficient evidence for Zeeman splitting of hydrogen lines for a magnetic field in excess of 1 MG. If such high magnetic fields in white dwarfs result from the isolated evolution of a single star then there should be the same fraction of high field white dwarfs among this SDSS binary sample as among single stars. Thus, we deduce that the origin of such high magnetic fields must be intimately tied to the formation of cataclysmic variables (CVs). The formation of a CV must involve orbital shrinkage from giant star to main-sequence star dimensions. It is believed that this shrinkage occurs as the low-mass companion and the white dwarf spiral together inside a common envelope. CVs emerge as very close but detached binary stars that are then brought together by magnetic braking or gravitational radiation. We propose that the smaller the orbital separation at the end of the common envelope phase, the stronger the magnetic field. The magnetic cataclysmic variables (MCVs) originate from those common envelope systems that almost merge. Those common envelope systems that do merge are the progenitors of the single high field white dwarfs. Thus all highly magnetic white dwarfs, be they single stars or the components of MCVs, have a binary origin. This accounts for the relative dearth of single white dwarfs with fields of 104–106 G. Such intermediate-field white dwarfs are found preferentially in cataclysmic variables. The bias towards higher masses for highly magnetic white dwarfs is expected if a fraction of these form when two degenerate cores merge in a common envelope. From the space density of single highly magnetic white dwarfs we estimate that about three times as many common envelope events lead to a merged core as to a cataclysmic variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E A Milne, Mon. Not. R. Astron. Soc. 91, 4 (1930)

    ADS  MATH  Google Scholar 

  2. S Chandrasekhar, Mon. Not. R. Astron. Soc. 91, 456 (1931)

    ADS  Google Scholar 

  3. G D Schmidt et al, Astrophys. J. 595, 1101 (2003)

    Article  ADS  Google Scholar 

  4. A Kawka, S Vennes, G D Schmidt, D T Wickramasinghe and R Koch, Astrophys. J. 654, 499 (2007)

    Article  ADS  Google Scholar 

  5. J Liebert et al, Astron. J. 129, 2376 (2005)

    Article  ADS  Google Scholar 

  6. B Warner, Cataclysmic variables (Cambridge Univ. Press, Cambridge, 1995)

    Book  Google Scholar 

  7. D T Wickramasinghe and L Ferrario, Pub. Ast. Soc. Pac. 112, 773 (2000)

    ADS  Google Scholar 

  8. N M Silvestri et al, Astron. J. 134, 741 (2007)

    Article  ADS  Google Scholar 

  9. McClure [9] made a similar assertion about the R stars after an extensive radial velocity search revealed that none has a companion. If they are formed by an isolated single star mechanism they ought to be equally as common in wide binary stars as among single stars.

  10. R D McClure, Pub. Ast. Soc. Pac. 109, 256 (1997)

    Article  ADS  Google Scholar 

  11. C A Tout and E Regős, in ASP Conf. Ser. Vol. 85, Cape Workshop on Magnetic Cataclysmic Variables edited by D A H Buckley and B Warner (Astron. Soc. Pac., San Francisco, 1995) p. 477

  12. B Paczyński, in Proc. IAU Symp. 73, Structure and Evolution of Close Binary Systems edited by P P Eggleton, S Mitton and J Whelan (Reidel, Dordrecht, 1976) p. 75

  13. K M Vanlandingham et al, Astron. J. 130, 734 (2005)

    Article  ADS  Google Scholar 

  14. J B Holberg, T D Oswalt and E M Sion, Astrophys. J. 571, 512 (2002)

    Article  ADS  Google Scholar 

  15. R F Green, M Schmidt and J Liebert, Astrophys. J. Suppl. 61, 305 (1986)

    Article  ADS  Google Scholar 

  16. J Holberg and K Magargal, in ASP Conf. Ser. Vol. 334, 14th European Workshop on White Dwarfs edited by D Koester and S Moehler (Astron. Soc. Pac., San Francisco, 2005) p. 419

  17. J Liebert, Pub. Ast. Soc. Pac. 100, 1302 (1988)

    Article  ADS  Google Scholar 

  18. P Bergeron, S K Leggett and M T Ruiz, Astrophys. J. Suppl. 133, 413 (2001)

    Article  ADS  Google Scholar 

  19. S O Kepler, S J Kleinman, A Nitta, D Koester, B G Castanheira, O Giovannini, A F M Costa and L Althaus, Mon. Not. R. Astron. Soc. 375, 1315 (2007)

    Article  ADS  Google Scholar 

  20. R F Webbink and D T Wickramasinghe, in ASP Conf. Ser. Vol. 330, The Astrophysics of Cataclysmic Variables and Related Objects edited by J-M Hameury and J-P Lasota (Astron. Soc. Pac., San Francisco, 2005) p. 137

  21. G D Schmidt et al, Astrophys. J. 630, 1037 (2005)

    Article  ADS  Google Scholar 

  22. G D Schmidt, P Szkody, A Henden, S F Anderson, D Q Lamb, B Margon and D P Schneider, Astrophys. J. 654, 521 (2007)

    ADS  Google Scholar 

  23. L Ferrario, S Vennes, D T Wickramasinghe, J A Bailey and D J Christian, Mon. Not. R. Astron. Soc. 292, 205 (1997)

    ADS  Google Scholar 

  24. P Bergeron, M-T Ruiz and S K Leggett, Astrophys. J. 407, 733 (1993)

    Article  ADS  Google Scholar 

  25. S Vennes, L Ferrario and D T Wickramasinghe Mon. Not. R. Astron. Soc. 302, L49 (1999)

    Article  ADS  Google Scholar 

  26. P Bergeron, M T Ruiz and S K Leggett, Astrophys. J. Suppl. 108, 339 (1997)

    Article  ADS  Google Scholar 

  27. C A Tout and J E Pringle, Mon. Not. R. Astron. Soc. 256, 269 (1992)

    ADS  Google Scholar 

  28. E Regős and C A Tout, Mon. Not. R. Astron. Soc. 273, 146 (1995)

    ADS  Google Scholar 

  29. D Koester et al, Astron. Astrophys. 378, 556 (2001)

    Article  ADS  Google Scholar 

  30. E Sion, in ASP Conf. Ser. Vol. 315, Magnetic Cataclysmic Variables edited by S Vrielmann and M Cropper (Astron. Soc. Pac., San Francisco, 2004) p. 2

  31. R G Martin, C A Tout and P Lesaffre, Mon. Not. R. Astron. Soc. 373, 263 (2006)

    Article  ADS  Google Scholar 

  32. L Ferrario and D T Wickramasinghe, Mon. Not. R. Astron. Soc. 356, 615 (2005)

    Article  ADS  Google Scholar 

  33. J-P Zahn, A S Brun and S Mathis, Astron. Astrophys. 474, 145 (2007)

    Article  ADS  MATH  Google Scholar 

  34. C A Tout, D T Wickramasinghe and L Ferrario, Mon. Not. R. Astron. Soc. 355, L13 (2004)

    Article  ADS  Google Scholar 

  35. E H Levy and W K Rose, Astrophys. J. 193, 419 (1974)

    Article  ADS  Google Scholar 

  36. M L Pretorius, C Knigge, D O’Donoghue, J P Henry, I M Gioia and C R Mullis, Mon. Not. R. Astron. Soc. 382, 1279 (2007)

    Article  ADS  Google Scholar 

  37. C A Tout, D T Wickramasinghe, J Liebert, L Ferrario and J E Pringle, Mon. Not. R. Astron. Soc. 387, 897 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHRISTOPHER A TOUT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

TOUT, C.A. The origin of the strongest magnetic fields in dwarfs. Pramana - J Phys 77, 199–212 (2011). https://doi.org/10.1007/s12043-011-0128-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0128-x

Keywords

PACS Nos

Navigation