Skip to main content
Log in

Synchronization in multicell systems exhibiting dynamic plasticity

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Collective behaviour in multicell systems arises from exchange of chemicals/ signals between cells and may be different from their intrinsic behaviour. These chemicals are products of regulated networks of biochemical pathways that underlie cellular functions, and can exhibit a variety of dynamics arising from the non-linearity of the reaction processes. We have addressed the emergent synchronization properties of a ring of cells, diffusively coupled by the end product of an intracellular model biochemical pathway exhibiting non-robust birhythmic behaviour. The aim is to examine the role of intercellular interaction in stabilizing the non-robust dynamics in the emergent collective behaviour in the ring of cells. We show that, irrespective of the inherent frequencies of individual cells, depending on the coupling strength, the collective behaviour does synchronize to only one type of oscillations above a threshold number of cells. Using two perturbation analyses, we also show that this emergent synchronized dynamical state is fairly robust under external perturbations. Thus, the inherent plasticity in the oscillatory phenotypes in these model cells may get suppressed to exhibit collective dynamics of a single type in a multicell system, but environmental influences can sometimes expose this underlying plasticity in its collective dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A L Lehninger, D L Nelson and M M Cox, Principles of biochemistry, 4th edition (Worth Publishers, USA, 2004)

    Google Scholar 

  2. A Goldbeter, Biochemical oscillations and cellular rhythms (Cambridge University Press, Cambridge, UK, 1996)

    MATH  Google Scholar 

  3. T Haberichter, M Marhl and R Heinrich, Biophys. Chem. 90, 17 (2001)

    Article  Google Scholar 

  4. U S Bhalla and R Iyengar, Science 283, 381 (1999)

    Article  ADS  Google Scholar 

  5. J C Leloup and A Goldbeter, J. Theor. Biol. 198, 445 (1999)

    Article  Google Scholar 

  6. M J Berridge, M D Bootman and P Lipp, Nature (London) 395, 645 (1998)

    Article  Google Scholar 

  7. K Nielsen, P G Sorensen, F Hynne and H G Busse, Biophys. Chem. 72, 49 (1998)

    Article  Google Scholar 

  8. T Hauck and F W Schneider, J. Phys. Chem. 97, 391 (1993)

    Article  Google Scholar 

  9. O Decroly and A Goldbeter, Proc Natl Acad. Sci. USA 79, 6917 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A K Ghosh and B Chance, Biochem. Biophys. Res. Commun. 16, 174 (1964)

    Article  Google Scholar 

  11. O Citri and I R Epstein, J. Phys. Chem. 92, 1865 (1988)

    Article  Google Scholar 

  12. M Alamgir and I R Epstein, J. Am. Chem. Soc. 105, 2500 (1983)

    Article  Google Scholar 

  13. M Rosenblum and A Pikovsky, Contemporary Phys. 44, 401 (2003)

    Article  ADS  Google Scholar 

  14. M Rosenblum, A Pikovsky and J Kurths, Synchronisation, A universal concept in nonlinear sciences (Cambridge University Press, Cambridge, UK, 2001)

    Google Scholar 

  15. S H Strogatz, Nature (London) 410, 268 (2001)

    Article  ADS  Google Scholar 

  16. M Tsuchiya, S T Wong, Z X Yeo, A Colosimo, M C Palumbo, L Farina, M Crescenzi, A Mazzola, R Negri, M M Bianchi, K Selvarajoo, M Tomita and A Giuliani, FEBS J. 274, 2878 (2007)

    Article  Google Scholar 

  17. C Aalkjaer and H Nilsson, British J. Pharmacology 144, 605 (2005)

    Article  Google Scholar 

  18. X Bonnefont, A Lacampagne, A Sanchez-Hormigo, E Fino, A Creff, M Mathieu, S Smallwood, D Carmignac, P Fontanaud, P Travo, G Alonso, N Courtois-Coutry, S M Pincus, I C A F Robinson and P Mollard, Proc. Natl Acad. Sci. USA 102, 16880 (2005)

    Article  ADS  Google Scholar 

  19. R Bertram and A Sherman, J. Biosci. 25, 197 (2000)

    Google Scholar 

  20. M Bier, B M Bakker and H V Westerhoff, Biophys. J. 78, 1087 (2000)

    Article  Google Scholar 

  21. D Somers and N Kopell, Physica D89, 169 (1995)

    MathSciNet  Google Scholar 

  22. S Rajesh, Sudeshna Sinha and Somdata Sinha, Phys. Rev. E75, 011906 (2007)

    Google Scholar 

  23. L M Pecora, Phys. Rev. E58, 347 (1998)

    MathSciNet  Google Scholar 

  24. A N Pisarchik, R Jaimes-Reátegui, J R Villalobos-Salazar, J H García-López and S Boccaletti, Phys. Rev. Lett. 96, 244102 (2006)

    Google Scholar 

  25. D Gonze, S Bernard, C Waltermann, A Kramer and H Herzel, Biophys. J. 89, 120 (1989)

    Article  Google Scholar 

  26. E Montbrio, J Kurths and B Blasius, Phys. Rev. E70, 056125 (2004)

    Google Scholar 

  27. J Wolf and R Heinrich, Biosystems 43, 1 (1997)

    Article  Google Scholar 

  28. H Maamar, A Raj and D Dubnau, Science 317, 526 (2007)

    Article  ADS  Google Scholar 

  29. G M Süel, R P Kulkarni, J Dworkin, J Garcia-Ojalvo and M B Elowitz, Science 315, 1716 (2007)

    Article  ADS  Google Scholar 

  30. C Suguna, K K Chowdhury and Somdatta Sinha, Phys. Rev. E60, 5943 (1999)

    ADS  Google Scholar 

  31. C Suguna and Somdatta Sinha, Fluctuations Noise Lett. 2, L313 (2002)

    Article  MathSciNet  Google Scholar 

  32. C Suguna, R Maithreye, S Suthram and Somdatta Sinha, in: Recent research developments in biophysical chemistry edited by C A Condat, A Baruzzi (Research Signpost, Trivandrum, 2002) p. 91

    Google Scholar 

  33. C Suguna and Somdatta Sinha, Physica A346, 154 (2005)

    ADS  Google Scholar 

  34. Somdatta Sinha and R Ramaswamy, in: Chaos in biological systems edited by H Degn, A V Holden, L F Olsen (Plenum Press, New York, 1987) p. 59

  35. Somdatta Sinha and R Ramaswamy, Biosystems 20, 341 (1987)

    Article  Google Scholar 

  36. A Goldbeter and G Nicolis, Prog. Theor. Biol. 4, 65 (1976)

    Google Scholar 

  37. J J Tyson, J. Theor. Biol. 103, 313 (1983)

    Article  Google Scholar 

  38. Y Oono and S Puri, Phys. Rev. Lett. 58, 836 (1987)

    Article  ADS  Google Scholar 

  39. C Fuqua, S C Winans and E P Greenberg, Annu. Rev. Microbiol. 50, 727 (1996)

    Article  Google Scholar 

  40. M B Miller and B L Bassler, Annu. Rev. Microbiol. 55, 165 (2001)

    Article  Google Scholar 

  41. J A Shapiro, Annu. Rev. Microbiol. 52, 81 (1998)

    Article  Google Scholar 

  42. J Garcia-Ojalvo, M B Elowitz and S H Strogatz, Proc. Natl Acad. Sci. USA 101, 10955 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Suguna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suguna, C., Sinha, S. Synchronization in multicell systems exhibiting dynamic plasticity. Pramana - J Phys 71, 423–435 (2008). https://doi.org/10.1007/s12043-008-0176-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0176-z

Keywords

PACS Nos

Navigation