Skip to main content
Log in

Effect of macromolecular crowding on the rate of diffusion-limited enzymatic reaction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The cytoplasm of a living cell is crowded with several macromolecules of different shapes and sizes. Molecular diffusion in such a medium becomes anomalous due to the presence of macromolecules and diffusivity is expected to decrease with increase in macromolecular crowding. Moreover, many cellular processes are dependent on molecular diffusion in the cell cytosol. The enzymatic reaction rate has been shown to be affected by the presence of such macromolecules. A simple numerical model is proposed here based on percolation and diffusion in disordered systems to study the effect of macromolecular crowding on the enzymatic reaction rates. The model qualitatively explains some of the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A B Fulton, Cell 30, 345 (1982)

    Article  Google Scholar 

  2. S B Zimmerman and A P Minton, Annu. Rev. Biophys. Biomol. Struct. 22, 27 (1993)

    Article  Google Scholar 

  3. A P Minton, J. Biol. Chem. 276, 10577 (2001)

    Article  Google Scholar 

  4. S B Zimmermann and S O Trach, J. Mol. Biol. 222, 599 (1991)

    Article  Google Scholar 

  5. M J Saxton, Biophys. J. 66, 394 (1994); ibid. 70, 1250 (1996)

    Article  Google Scholar 

  6. A P Minton, Biopolymers 20, 2093 (1981)

    Article  Google Scholar 

  7. R Kopelman, J. Stat. Phys. 42, 185 (1986); Science 241, 1620 (1988)

    Article  ADS  Google Scholar 

  8. M A Savageau, J. Theor. Biol. 176, 115 (1995)

    Article  Google Scholar 

  9. D T Gillespie, Physica A188, 404 (1992)

    ADS  Google Scholar 

  10. T B Kepler and T C Elston, Biophys. J. 81, 3116 (2001)

    Article  Google Scholar 

  11. S Schnell and T E Turner, Prog. Biophys. Mol. Biol. 85, 235 (2004)

    Article  Google Scholar 

  12. T C Laurent, Eur. J. Biochem. 21, 498 (1971)

    Article  Google Scholar 

  13. A P Minton and J Wilf, Biochemistry 20, 4821 (1981)

    Article  Google Scholar 

  14. J R Wenner and V A Bloomfield, Biophys. J. 77, 3234 (1999)

    Article  Google Scholar 

  15. N Assad and J B F N Engberts, J. Am. Chem. Soc. 125, 6874 (2003)

    Article  Google Scholar 

  16. R J Ellis, Trends Biochem. Sci. 26, 597 (2001)

    Article  Google Scholar 

  17. D Stauffer and A Aharony, Introduction to percolation theory (Taylor and Francis, London, 1994)

    Google Scholar 

  18. K B Taylor, Enzyme kinetics and mechanisms (Kluwer Academic Publishers, The Netherlands, 2002)

    Google Scholar 

  19. Z Bajzer, M Huzak, K Neff and F G Prendergast, Croat. Chem. Acta 79, 437 (2006)

    Google Scholar 

  20. A Lin, R Kopelman and P Argyrakis, Phys. Rev. E53, 1502 (1996)

    ADS  Google Scholar 

  21. F Leyvraz and S Redner, Phys. Rev. A46, 3132 (1992)

    ADS  Google Scholar 

  22. Y Kafri and M J E Richardson, J. Phys. A32, 3253 (1999)

    Google Scholar 

  23. P G de Gennes, La Recherche 7, 916 (1976)

    Google Scholar 

  24. S Havlin and D Ben-Avraham, Adv. Phys. 36, 695 (1987)

    Article  ADS  Google Scholar 

  25. S B Santra and W A Seitz, Int. J. Mod. Phys. C11, 1357 (2000)

    ADS  Google Scholar 

  26. H Berry, Biophys. J. 83, 1891 (2002)

    Article  Google Scholar 

  27. P Le Doussal and C Monthus, Phys. Rev. E60, 1212 (1999)

    ADS  Google Scholar 

  28. L Homchaudhuri, N Sarma and R Swaminathan, Biopolymers 83, 477 (2006)

    Article  Google Scholar 

  29. R Swaminathan, C P Hoang and A S Verkman, Biophys. J. 72, 1900 (1997)

    Article  Google Scholar 

  30. A S Verkman, Trends Biochem. Sci. 27, 27 (2002)

    Article  Google Scholar 

  31. E Dauty and A S Verkman, J. Mol. Recognit. 17, 441 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Santra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, M., Santra, S.B., Anand, R. et al. Effect of macromolecular crowding on the rate of diffusion-limited enzymatic reaction. Pramana - J Phys 71, 359–368 (2008). https://doi.org/10.1007/s12043-008-0169-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0169-y

Keywords

PACS Nos

Navigation