Advertisement

Pramana

, Volume 71, Issue 2, pp 313–317 | Cite as

Realistic searches on stretched exponential networks

  • Parongama SenEmail author
Article

Abstract

We consider navigation or search schemes on networks which have a degree distribution of the form P(k) ∝ exp(−k γ). In addition, the linking probability is taken to be dependent on social distances and is governed by a parameter λ. The searches are realistic in the sense that not all search chains can be completed. An estimate of µ = ρ/s d, where ρ is the success rate and s d the dynamic path length, shows that for a network of N nodes, µ ∝ N δ in general. Dynamic small world effect, i.e., δ ≃ 0 is shown to exist in a restricted region of the λγ plane.

Keywords

Small world effect dynamic paths social distances 

PACS Nos

89.75.Hc 89.70.+c 89.75.Fb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D J Watts and S H Strogatz, Nature (London) 393, 440 (1998)CrossRefGoogle Scholar
  2. [1a]
    D J Watts, Small worlds (Princeton Univ. Press, Princeton, 1999)Google Scholar
  3. [2]
    R Albert and A-L Barabási, Rev. Mod. Phys. 74, 47 (2002)Google Scholar
  4. [3]
    M E J Newman, SIAM Rev. 45, 167 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  5. [4]
    S Milgram, Psychology Today 1, 60 (1967)Google Scholar
  6. [4a]
    J Travers and S Milgram, Sociometry 32, 425 (1969)CrossRefGoogle Scholar
  7. [5]
    P D Killworth and H R Bernard, Social Networks 1, 159 (1978)CrossRefGoogle Scholar
  8. [6]
    P S Dodds, R Muhamad and D J Watts, Science 301, 827 (2003)ADSCrossRefGoogle Scholar
  9. [7]
    L A Adamic and E Adar, Social Networks 27, 187 (2005)CrossRefGoogle Scholar
  10. [8]
    I Clarke, S G Miller, T W Hong, O Sandberg and B Wiley, IEEE Internet Computing 6, 40 (2002)CrossRefGoogle Scholar
  11. [9]
    D Liben Nowell, J Novak, R Kumar, P Raghavan and A Tomkins, Proc. Natl Acad. Sci. 102, 11623 (2005)ADSCrossRefGoogle Scholar
  12. [10]
    J Kleinberg, Nature (London) 406, 845 (2000)ADSCrossRefGoogle Scholar
  13. [11]
    L A Adamic, R M Lukose, A R Puniyani and B A Huberman, Phys. Rev. E64, 041235 (2001)Google Scholar
  14. [12]
    B J Kim, C N Yoon, S K Han and H Jeong, Phys. Rev. E65, 027103 (2002)Google Scholar
  15. [13]
    H Zhu and Z-X Huan, Phys. Rev. E70, 036117 (2004)Google Scholar
  16. [14]
    A P S de Moura, A E Motter and C Grebogi, Phys. Rev. E68, 036106 (2003)Google Scholar
  17. [15]
    D J Watts, P S Dodds and M E J Newman, Science 296, 1302 (2002)ADSCrossRefGoogle Scholar
  18. [16]
    S Carmi, R Cohen and D Dolev, Europhys. Lett. 74, 1102 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. [17]
    H P Thadakamalla, R Albert and S R T Kumara, Phys. Rev. E72, 066128 (2005)Google Scholar
  20. [18]
    A Clauset and C Moore, preprint arXiv:cond-mat/0309415Google Scholar
  21. [19]
    P Sen, J. Stat. Mech. P04007 (2007)Google Scholar
  22. [20]
    K Basu Hajra and P Sen, J. Stat. Mech. P06015 (2007)Google Scholar
  23. [21]
    S H Lee, P-J Kim, Y-Y Ahn and H Jeong, arXiv:0710.3268v1Google Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CalcuttaKolkataIndia

Personalised recommendations