Advertisement

Pramana

, Volume 71, Issue 2, pp 297–306 | Cite as

Motional dispersions and ratchet effect in inertial systems

  • W. L. Reenbohn
  • S. Saikia
  • R. Roy
  • Mangal C. MahatoEmail author
Article

Abstract

We obtain ratchet effect in inertial structureless systems in symmetric periodic potentials where the asymmetry comes from the non-uniform friction offered by the medium and driven by symmetric periodic forces. In the adiabatic limit the calculations are done by extending the matrix continued fraction method and also by numerically solving the appropriate Langevin equation. For finite frequency field drive the ratchet effect is obtained only numerically. In the transient time scales the system shows dispersionless behaviour as reported earlier when a constant force is applied. In the periodic drive case the dispersion behaviour is more complex. In this brief communication we report some of the results of our work.

Keywords

Ratchet current inhomogeneous systems underdamped Langevin equation coherent motion 

PACS Nos

05.60.Cd 05.40.-a 05.45.-a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P Reimann, Phys. Rep. 361, 57 (2002). Apart from the extensive references cited here, we give below only few representative referenceszbMATHADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M O Magnasco, Phys. Rev. Lett. 71, 1477 (1993)ADSCrossRefGoogle Scholar
  3. [3]
    J Prost, J F Chauwin, L Peliti and A Ajdari, Phys. Rev. Lett. 72, 2652 (1994)ADSCrossRefGoogle Scholar
  4. [4]
    W L Reenbohn and M C Mahato, arXiv:0807.2725v1 (cond-mat.stat-mech)Google Scholar
  5. [5]
    M Büttiker, Z. Phys. B68, 161 (1987)ADSCrossRefGoogle Scholar
  6. [5a]
    M C Mahato, T P Pareek and A M Jayannavar, Int. J. Mod. Phys. B10, 3857 (1996)ADSGoogle Scholar
  7. [6]
    M C Mahato, Indian J. Phys 78, 693 (2004)Google Scholar
  8. [7]
    K Lindenberg, J M Sancho, A M Lacasta and I M Sokolov, Phys. Rev. Lett. 98, 020602 (2007)Google Scholar
  9. [8]
    H Risken, The Fokker-Planck equation (Springer Verlag, Berlin, 1989)zbMATHGoogle Scholar
  10. [8a]
    H Risken and H D Vollmer, Z. Phys. B35, 177 (1979)ADSMathSciNetGoogle Scholar
  11. [9]
    L Machura, M Kostur, P Talkner, J Łuczka, F Marchesoni and P Hänggi, Phys. Rev. E70, 061105 (2004)Google Scholar
  12. [10]
    W L Reenbohn, S Saikia and M C Mahato, unpublishedGoogle Scholar
  13. [12]
    Ya M Blanter and M Büttiker, Phys. Rev. Lett. 81, 4040 (1998)CrossRefGoogle Scholar
  14. [13]
    D Dan, M C Mahato and A M Jayannavar, Physica A296, 375 (2001); Phys. Rev. E63, 056307 (2001)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  • W. L. Reenbohn
    • 1
  • S. Saikia
    • 1
    • 2
  • R. Roy
    • 3
  • Mangal C. Mahato
    • 1
    Email author
  1. 1.Department of PhysicsNorth-Eastern Hill UniversityShillongIndia
  2. 2.Department of PhysicsSt. Anthony’s CollegeShillongIndia
  3. 3.Women’s CollegeShillongIndia

Personalised recommendations