Advertisement

Pramana

, Volume 71, Issue 2, pp 211–232 | Cite as

Solvent density mode instability in non-polar solutions

  • Susmita Kar
  • Ranjit BiswasEmail author
  • J. ChakrabartiEmail author
Article
  • 44 Downloads

Abstract

We analyse the origin of the multiple long time scales associated with the long time decay observed in non-polar solvation dynamics by linear stability analysis of solvent density modes where the effects of compressibility and solvent structure are systematically incorporated. The coupling of the solute-solvent interactions at both ground and excited states of the solute with the compressibility and solvent structure is found to have important effects on the time scales. The present theory suggests that the relatively longer time constant is controlled by the solvent compressibility, while the solvent structure at the nearest-neighbour length scale dominates the shorter time constant.

Keywords

Linear stability non-polar solvation dynamics solvation time scale 

PACS Nos

31.70.Dk 64.70.Fx 78.47.+p 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G R Fleming and P G Wolynes, Phys. Today 43, 36 (1990)ADSCrossRefGoogle Scholar
  2. [2]
    R F Grote and J T Hynes, J. Chem. Phys. 73, 2715 (1980)ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J T Hynes, in The theory of chemical reactions edited bt M Baer (Chem. Rubber Publ. Co., Boca Raton, FL, 1985) Vol. 4Google Scholar
  4. [4]
    B Bagchi and R Biswas, Adv. Chem. Phys. 109, 207 (1999)CrossRefGoogle Scholar
  5. [5]
    D H Waldeck, Chem. Rev. 91, 415 (1991)CrossRefGoogle Scholar
  6. [6]
    M Maroncelli et al, J. Phys. Chem. B105, 17311 (1995)Google Scholar
  7. [7]
    T Pradhan and R Biswas, J. Phys. Chem. A111, 11514 (2007)Google Scholar
  8. [8]
    T Pradhan and R Biswas, J. Phys. Chem. A111, 11524 (2007)Google Scholar
  9. [9]
    R Biswas et al, J. Phys. Chem. A112, 915 (2008)Google Scholar
  10. [10]
    B Bagchi, Annu. Rev. Phys. Chem. 40, 115 (1989)CrossRefGoogle Scholar
  11. [11]
    B Bagchi and A Chandra, Adv. Chem. Phys. 80, 1 (1999)CrossRefGoogle Scholar
  12. [12]
    B Bagchi, J. Chem. Phys. 100, 506 (1994)CrossRefGoogle Scholar
  13. [13]
    M Maroncelli et al, J. Phys. Chem. B100, 10337 (1996)Google Scholar
  14. [14]
    B M Ladanyi and S Nugent, J. Chem. Phys. 124, 044505 (2006)Google Scholar
  15. [15]
    S A Egorov, Phys. Rev. Lett. 93, 023004-1 (2004)Google Scholar
  16. [16]
    M Maroncelli et al, J. Phys. Chem. A110, 3405 (2006)Google Scholar
  17. [17]
    R Biswas and J Chakrabarti, J. Phys. Chem. B111, 13743 (2007)Google Scholar
  18. [18]
    B Bagchi et al, J. Chem. Phys. 108, 4963 (1998)ADSCrossRefGoogle Scholar
  19. [19]
    M C Cross and P Hohenberg, Rev. Mod. Phys. 65, 851 (1993)ADSCrossRefGoogle Scholar
  20. [20]
    J Chakrabarti, J. Chem. Phys. 118, 249 (2003)ADSCrossRefGoogle Scholar
  21. [21]
    B Bagchi, Physica A145, 273 (1987)ADSMathSciNetGoogle Scholar
  22. [22]
    U M B Marconi and P Tarazona, J. Chem. Phys. 110, 8032 (1999)CrossRefGoogle Scholar
  23. [23]
    J P Hansen and I R McDonald, Theory of simple liquids 2nd edn (Academic Press, London, 1986)Google Scholar
  24. [24]
    R Biswas and J Chakrabarti, unpublished resultsGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Department of Chemical, Biological and Macromolecular SciencesS. N. Bose National Centre for Basic Sciences, JD BlockSalt Lake City, KolkataIndia
  2. 2.the Unit for Nanoscience and TechnologyS.N. Bose National Centre for Basic Sciences, JD BlockSalt Lake City, KolkataIndia
  3. 3.the Advanced Materials Research UnitS.N. Bose National Centre for Basic Sciences, JD BlockSalt Lake City, KolkataIndia

Personalised recommendations