Principles and approaches of association mapping in plant breeding

Abstract

Association mapping (AM) is an approach that accounts for thousands of polymorphisms to evaluate the effects of quantitative trait loci (QTL). It is an important instrument for identification of alleles and new genes as well as dissection of complex characters. AM is more advantageous than linkage analysis due to the comparatively high-resolution provided, which is based on the structure of linkage disequilibrium (LD). Marker density, population, sample sizes and population structure are among the critical factors that should be considered when AM is used. It is necessary to note that, the choice of germplasm, genotypic and phenotypic data quality, the use of appropriate statistical analysis for marker-phenotype association detections and verifications are key to association analysis. Great potentials to enhance crop genetic improvement are offered by AM. However, to understand its application, extensive research is needed, such as improvements in computational and statistical methods and its integration with gene annotation data or functional analysis. Statistical apparatuses that are user-friendly and genetic resources are also needed and must be enhanced. Rare allele/variant analysis is an important area to be considered to enhance AM studies. Joint linkage association mapping has now been proposed to improve linkage-based QTL mapping and AM limitations. In the future, new candidate genes and QTL can be easily identified if genome-wide association studies (GWAS) are combined with functional genomics. As such, this review describes association mapping, its utilization in plant breeding, limitations as well as advantages over linkage mapping.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Álvarez MF, Mosquera T, Blair MW (2015) The use of association genetics approaches in plant breeding Reviews 38:17–68

    Google Scholar 

  2. Arab MM, Marrano A, Abdollahi-Arpanahi R, Leslie CA, Askari H, Neale DB, Vahdati K (2019) Genome-wide patterns of population structure and association mapping of nut-related traits in Persian walnut populations from Iran using the axiom J. Regia 700K SNP array. Scientific reports 9(1):6376

    PubMed  PubMed Central  Google Scholar 

  3. Ardlie KG, Kruglyak L, Seielstad M (2002) Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics 3:299

    CAS  PubMed  Google Scholar 

  4. Arora S et al (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nature biotechnology 37:139

    CAS  PubMed  Google Scholar 

  5. Atlin G, Kleinknecht K, Singh K, Piepho H (2011) Managing genotype x environment interaction in plant breeding programs: a selection theory approach. Journal of the Indian Society of Agricultural Statistics 65:237–247

    Google Scholar 

  6. Bilton TP, McEwan JC, Clarke SM, Brauning R, van Stijn TC, Rowe SJ, Dodds KG (2018) Linkage disequilibrium estimation in low coverage high-throughput sequencing data. Genetics 209:389–400

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  8. Breseghello F, Sorrells ME (2006a) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science 46:1323–1330

    Google Scholar 

  9. Breseghello F, Sorrells ME (2006b) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    PubMed  PubMed Central  Google Scholar 

  10. Buckler ES et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    CAS  PubMed  Google Scholar 

  11. Buckler ES IV, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Current opinion in plant biology 5:107–111

    CAS  PubMed  Google Scholar 

  12. Caizergues A, Bernard-Laurent A, Brenot JF, Ellison L, Rasplus J (2003) Population genetic structure of rock ptarmigan Lagopus mutus in Northern and Western Europe. Molecular Ecology 12:2267–2274

    CAS  PubMed  Google Scholar 

  13. Chhatre VE (2013) Population structure, association mapping of economic traits and landscape genomics of East Texas loblolly pine (Pinus taeda L.). Texas a&M University,

  14. Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement Theoretical and Applied Genetics 126:867–887

  15. Collard BC, Mackill DJ (2007) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 363:557–572

    Google Scholar 

  16. Descalsota GIL et al. (2018) Genome-wide association mapping in a rice MAGIC Plus population detects QTL and genes useful for biofortification Frontiers in plant science 9

  17. Du X et al (2018) Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC genomics 19:451

    PubMed  PubMed Central  Google Scholar 

  18. Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP the plant. Genome 4:250–255

    Google Scholar 

  19. Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Genomics-assisted crop improvement. Springer, pp 97–119

  20. Eskridge K (2003) Field design and the search for quantitative trait loci in plants. Available,

  21. Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular ecology 11:1591–1604

    CAS  PubMed  Google Scholar 

  22. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan Y, Zhou G, Shabala S, Chen Z-H, Cai S, Li C, Zhou M (2016) Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.). Frontiers in plant science 7:946

    PubMed  PubMed Central  Google Scholar 

  24. Font I Forcada C, Guajardo V, Reyes Chin Wo S, Moreno Sánchez MÁ (2019) Association mapping analysis for fruit quality traits in Prunus persica using SNP markers. Front Plant Sci 9:2005

    PubMed  PubMed Central  Google Scholar 

  25. Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annual review of plant biology 54:357–374

    CAS  PubMed  Google Scholar 

  26. Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Critical reviews in plant sciences 31:93–123

    Google Scholar 

  27. Galas DJ, McCormack SJ (2003) An historical perspective on genomic technologies

  28. Gao J, Wang S, Zhou Z, Wang S, Dong C, Mu C et al (2019) Linkage mapping and GWAS reveal candidate genes conferring thermotolerance of seed-set in maize. J Exp Bot 70:4849–4864

    CAS  PubMed  Google Scholar 

  29. Gianola D (2013) Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 194:573–596

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo W, Fukatsu T, Ninomiya S (2015) Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant methods 11:7

    PubMed  PubMed Central  Google Scholar 

  31. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant molecular biology 57:461–485

    CAS  PubMed  Google Scholar 

  32. Gupta PK, Kulwal PL, Jaiswal V (2019) Association mapping in plants in the post-GWAS genomics era. Advances in genetics 104:75-154

  33. Hartwig B, James GV, Konrad K, Schneeberger K, Turck F (2012) Fast isogenic mapping-by-sequencing of ethyl methanesulfonate-induced mutant bulks. Plant physiology 160:591–600

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayes B, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  PubMed Central  Google Scholar 

  35. Hayward AC, Tollenaere R, Dalton-Morgan J, Batley J (2015) Molecular marker applications in plants. In: Plant Genotyping. Springer, pp 13–27

  36. He Y et al (2017) GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Scientific reports 7:15971

    PubMed  PubMed Central  Google Scholar 

  37. Hou S et al. (2018) Genome-wide association studies reveal genetic variation and candidate genes of drought stress-related traits in cotton (Gossypium hirsutum L) Frontiers in plant science 9

  38. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G (2012) De novo assembly and genotyping of variants using colored de Bruijn graphs. Nature genetics 44:226

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Briefings in functional genomics 9:166–177

    CAS  PubMed  Google Scholar 

  40. Jonas E, de Koning D-J (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504

    CAS  PubMed  Google Scholar 

  41. Juliana P et al. (2017) Comparison of models and whole-genome profiling approaches for genomic-enabled prediction of Septoria tritici blotch, Stagonospora nodorum blotch, and tan spot resistance in wheat the plant genome

  42. Kover PX et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana PLoS genetics 5:e1000551

  43. Kumar V, Singh A, Mithra SVA, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22:133–145

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions, and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    CAS  PubMed  Google Scholar 

  45. Liu R et al. (2018) GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers Frontiers in Plant Science 9

  46. Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Perez-de-Castro AM et al (2012) Application of genomic tools in plant breeding. Current genomics 13:179–195

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends in plant science 12:57–63

    CAS  PubMed  Google Scholar 

  49. Mahlein A-K (2016) Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100:241–251

    PubMed  Google Scholar 

  50. Malosetti M, Ribaut JM, Vargas M, Crossa J, Van Eeuwijk FA (2008) A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L). Euphytica 161:241–257

    Google Scholar 

  51. Maulana F, Ayalew H, Anderson JD, Kumssa TT, Huang W, Ma X-F (2018) Genome-Wide Association Mapping of Seedling Heat Tolerance in Winter Wheat Frontiers in plant science 9

  52. Mohan M, Nair S, Bhagwat A, Krishna T, Yano M, Bhatia C, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular breeding 3:87–103

    CAS  Google Scholar 

  53. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. The Plant Cell 21:2194–2202

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316

    PubMed  PubMed Central  Google Scholar 

  55. Negin B, Moshelion M (2017) The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Functional Plant Biology 44:107–118

    Google Scholar 

  56. Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J (2012) SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS One 7:e37558

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nordström KJ et al (2013) Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature biotechnology 31:325

    PubMed  Google Scholar 

  58. Oraguzie NC, Wilcox PL, Rikkerink EH, De Silva HN (2007) Linkage disequilibrium. In: Association mapping in plants. Springer, pp 11–39

  59. Ornella L et al (2014) Genomic-enabled prediction with classification algorithms. Heredity 112:616

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Passioura J (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859

    CAS  PubMed  Google Scholar 

  61. Patishtan J, Hartley TN, Fonseca de Carvalho R, Maathuis FJ (2018) Genome-wide association studies to identify rice salt-tolerance markers. Plant, cell & environment 41:970–982

    CAS  Google Scholar 

  62. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS genetics 2:e190

    PubMed  PubMed Central  Google Scholar 

  63. Piepho H, Büchse A, Truberg B (2006) On the use of multiple lattice designs and α-designs in plant breeding trials. Plant breeding 125:523–528

    Google Scholar 

  64. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature genetics 38:904

    CAS  PubMed  Google Scholar 

  65. Pritchard JK, Donnelly P (2001) Case-control studies of association in structured or admixed populations. Theoretical population biology 60:227–237

    CAS  PubMed  Google Scholar 

  66. Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. The American Journal of Human Genetics 65:220–228

    CAS  PubMed  Google Scholar 

  67. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. The American Journal of Human Genetics 67:170–181

    CAS  PubMed  Google Scholar 

  68. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    CAS  PubMed  Google Scholar 

  69. Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    CAS  PubMed  Google Scholar 

  70. Rahim MS, Sharma H, Parveen A, Roy JK (2018) Trait mapping approaches through association analysis in plants. In: Plant Genetics and Molecular Biology. Springer, pp 83–108

  71. Randi E, Lucchini V (2002) Detecting rare introgression of domestic dog genes into wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite variation. Conserv Genet 3:29–43

    Google Scholar 

  72. Resende RT et al (2018) Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris G3: genes. Genomes, Genetics 8:2841–2854

    CAS  Google Scholar 

  73. Saade S et al (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Scientific reports 6:32586

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Simko I, Hayes RJ, Furbank RT (2016) Non-destructive phenotyping of lettuce plants in early stages of development with optical sensors. Frontiers in plant science 7:1985

    PubMed  PubMed Central  Google Scholar 

  75. Singh S et al (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13, and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theoretical and Applied Genetics 102:1011–1015

    CAS  Google Scholar 

  76. Slatkin M (2008) Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Song Q, Jia G, Zhu Y, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1. 0) in soybean. Crop Sci 50:1950–1960

    CAS  Google Scholar 

  78. Soto-Cerda BJ, Cloutier S (2012) Association mapping in plant genomes Genetic Diversity in Plants:29–54

  79. Spindel JE, Dahlberg J, Colgan M, Hollingsworth J, Sievert J, Staggenborg SH, Hutmacher R, Jansson C, Vogel JP (2018) Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought. BMC Genomics 19:679

    PubMed  PubMed Central  Google Scholar 

  80. Stich B, Melchinger AE (2010) An introduction to association mapping in plants. CAB Rev 5:1–9

    Google Scholar 

  81. Stich B, Melchinger AE, Piepho H-P, Heckenberger M, Maurer HP, Reif JC (2006) A new test for family-based association mapping with inbred lines from plant breeding programs. Theoretical and applied genetics 113:1121–1130

    PubMed  Google Scholar 

  82. Stich B, Möhring J, Piepho H-P, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754

    PubMed  PubMed Central  Google Scholar 

  83. Su J et al (2018) Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theoretical and applied genetics 131:1299–1314

    CAS  PubMed  Google Scholar 

  84. Sun Z et al. (2018) Identification of SNPs and candidate genes associated with salt tolerance at the seedling stage in cotton (Gossypium hirsutum L) Frontiers in plant science 9

  85. Sved JA, Cameron EC, Gilchrist AS (2013) Estimating effective population size from linkage disequilibrium between unlinked loci: theory and application to fruit fly outbreak populations. PLoS One 8:e69078

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Syvänen A-C (2005) Toward genome-wide SNP genotyping. Nature genetics 37:S5

    PubMed  Google Scholar 

  87. Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Reviews Genetics 3:391

    CAS  PubMed  Google Scholar 

  88. Tardivel A, Sonah H, Belzile F, O’Donoughue LS (2014) Rapid identification of alleles at the soybean maturity gene E3 using genotyping by sequencing and a haplotype-based approach the plant genome 7

  89. Taylor MS et al. (2018) Genome-Wide Association Study in Pseudo-F2 Populations of Switchgrass Identifies Genetic Loci Affecting Heading and Anthesis Dates Frontiers in plant science 9:1250

  90. Therkildsen NO, Palumbi SR (2017) Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Molecular ecology resources 17:194–208

    CAS  PubMed  Google Scholar 

  91. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES IV (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    CAS  PubMed  Google Scholar 

  92. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    CAS  Google Scholar 

  93. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics 7:167

    Google Scholar 

  96. Wessinger CA, Kelly JK, Jiang P, Rausher MD, Hileman LC (2018) SNP-skimming: A fast approach to map loci generating quantitative variation in natural populations. Molecular ecology resources 18:1402–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic acids research 18:6531–6535

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu R, Zeng ZB (2001) Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157(2):899–909

  99. Xiao Y, Liu H, Wu L, Warburton M, Yan J (2017) Genome-wide association studies in maize: Praise and stargaze. Molecular Plant 10:359–374

  100. Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666

    CAS  PubMed  Google Scholar 

  101. Yang X et al (2018) Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing. PloS one 13:e0196690

    PubMed  PubMed Central  Google Scholar 

  102. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Current opinion in biotechnology 17:155–160

    CAS  PubMed  Google Scholar 

  103. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nature reviews genetics 2:983

    CAS  PubMed  Google Scholar 

  104. Zhang X, Bailey SD, Lupien M (2014) Laying a solid foundation for Manhattan–‘setting the functional basis for the post-GWAS era’. Trends in Genetics 30:140–149

    PubMed  Google Scholar 

  105. Zhang X, Yuan Y (2019) Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Front Plant Sci 9:1919

    PubMed  PubMed Central  Google Scholar 

  106. Zhao K et al (2007) An Arabidopsis example of association mapping in structured samples. PLoS genetics 3:e4

    PubMed  PubMed Central  Google Scholar 

  107. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. The plant genome 1:5–20

    CAS  Google Scholar 

  108. Zhu M, Zhao S (2007) Candidate gene identification approach: progress and challenges. an International journal of biological sciences 3:420

    CAS  Google Scholar 

  109. Zhu X, Xu F, Zhao S, Bo W, Jiang L, Pang X, Wu R (2015) Inferring the evolutionary history of outcrossing populations through computing a multiallelic linkage–linkage disequilibrium map. Methods in Ecology and Evolution 6:1259–1269

    Google Scholar 

  110. Zhu Z et al (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature genetics 48:481

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

National Natural Science Foundation of China (31771369) and the China Agriculture Research System (CARS-19-E06) supported this work.

Author information

Affiliations

Authors

Contributions

AKI was responsible for literature search and writing the draft; LZ conceived the idea for the work and revised the draft; SN, MZ, YX, LZ, LMZ, and JQ did critical revision of the manuscript.

Corresponding author

Correspondence to Liwu Zhang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Zhi-Liang Zheng

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.K., Zhang, L., Niyitanga, S. et al. Principles and approaches of association mapping in plant breeding. Tropical Plant Biol. 13, 212–224 (2020). https://doi.org/10.1007/s12042-020-09261-4

Download citation

Keywords

  • Association mapping (AM)
  • Genome-wide association studies (GWAS)
  • Recombinant inbred lines
  • Quantitative trait loci
  • Single nucleotide polymorphisms
  • Candidate genes