Skip to main content
Log in

Antioxidant System Differential Regulation is Involved in Coffee Ripening Time at Different Altitudes

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Fruit ripening can be seen as an oxidative phenomenon that, depending on its intensity, may directly influence fruit quality. At relatively higher altitudes, coffee fruit ripening takes place through an extended period of time, which positively affects coffee quality. However, little is known about the oxidative processes and antioxidant metabolism of coffee fruits grown at these altitudes. Thus, this study aimed to characterise coffee fruit development from trees grown at two contrasting altitudes (965 m and 1310 m) through phenological analysis and antioxidant metabolism evaluation (Hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents; superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activity and gene expression). Phenological analysis showed that altitude extended coffee reproductive cycle by a month and promoted a higher ripening uniformity, with 100% of fruits at the ideal ripening stage for harvest (cherry stage) in the last evaluation time. H2O2 and malondialdehyde contents revealed that in both altitudes fruits went through oxidative damage, though in an early manner at the lower altitude. Although gene expression and enzyme activity did not well correlate, the delay in the oxidative damage in fruits of the higher altitude was probably a result of an increased efficiency in H2O2 neutralisation due to the higher activity levels of the APX and CAT enzymes, mainly in green fruits. Thus, a better removal of reactive oxygen species in coffee fruits from plants grown at higher altitudes is involved in the extension of the coffee reproductive cycle, contributing to the production of a higher cup quality coffee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

CAT:

Catalase

APX:

Ascorbate peroxidase

ROS:

Reactive Oxygen Species

RT-qPCR:

Real Time-quantitative Polymerase Chain Reaction

References

  • Agwanda C, Baradat P, Eskes A et al (2003) Selection for bean and liquor qualities within related hybrids of Arabica coffee in multilocal field trials. Euphytica 131:1–14

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Avelino J, Barboza B, Araya JC et al (2005) Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J Sci Food Agric 85:1869–1876

    Article  CAS  Google Scholar 

  • Awad MA, Al-Qurashi AD, Mohamed SA (2011) Antioxidant capacity, antioxidant compounds and antioxidant enzyme activities in five date cultivars during development and ripening. Sci Hortic 129:688–693

    Article  CAS  Google Scholar 

  • Barbosa JN, Borém FM, Cirillo MÂ et al (2012) Coffee quality and its interactions with environmental factors in Minas Gerais, Brazil. J Agric Sci 4:181–190

    Google Scholar 

  • Bertrand B, Boulanger R, Dussert S et al (2012) Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chem 135:2575–2583

    Article  CAS  PubMed  Google Scholar 

  • BSCA - Brazil Specialty Coffee Association (2015), Brazil. http://bsca.com.br/cafes-especiais.php. Cited 30 Jan 2015

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzimol 52:302–310

  • Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-rime PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116

    Article  CAS  Google Scholar 

  • Cheng B, Furtado A, Smyth HE et al (2016) Influence of genotype and environment on coffee quality. Trends Food Sci Technol 57:20–30

    Article  CAS  Google Scholar 

  • Dabrowska G, Kata A, Goc A et al (2007) Characteristics of the plant ascorbate peroxidase family. Acta Biol Crac 1:7–17

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Decazy F, Avelino J, Guyot B et al (2003) Quality of different Honduran coffees in relation to several environments. J Food Sci 68:2356–2361

    Article  CAS  Google Scholar 

  • Feng X, Lai Z, Lin Y et al (2015) Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group). BMC Genomics 16:823

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng K, Yu J, Cheng Y et al (2016) The SOD gene family in tomato: identification, phylogenetic relationships, and expression patterns. Front Plant Sci 7:1279

    PubMed  PubMed Central  Google Scholar 

  • Fernandes-Brum CN, Garcia B de O, Moreira RO et al (2017) A panel of the most suitable reference genes for RT-qPCR expression studies of coffee: screening their stability under different conditions. Tree Genet Genomes 13:131

    Article  Google Scholar 

  • Galland JC, Avelino J, Larraín A et al (2006) Origin coffees: are appellations of origin on the horizon? In: Montagnon C (ed) Coffee: terroirs and qualities, CIRAD. Editions Quae, Versailles, p 49

  • Gechev TS, Van Breusegem F, Stone JM et al (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Geromel C, Ferreira LP, Davrieux F et al (2008) Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiol Biochem 46:569–579

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA et al (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23

    Google Scholar 

  • Guyot B, Gueule D, Manez JC et al (1996) Influence de l'altitude et de l'ombrage sur la qualité des cafés Arabica. Plantations Recherche Développement 3:272–283

    Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, Xia R, Hu L et al (2007) Antioxidant activity and oxygen-scavenging system in orange pulp during fruit ripening and maturation. Sci Hortic 113:166–172

    Article  CAS  Google Scholar 

  • Joët LA, Descroix F, Doulbeau S et al (2010) Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem 118:693–701

    Article  Google Scholar 

  • Kan J, Wang H, Jin C, Xie H (2010) Changes of reactive oxygen species and related enzymes in mitochondria respiratory metabolism during the ripening of peach fruit. Agric Sci China 9:138–146

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kofidis G, Bosabalidis AM, Moustakas M (2007) Combined effects of altitude and season on leaf characteristics of Clinopodium vulgare L. (Labiatae). Environ Exp Bot 60:69–76

    Article  Google Scholar 

  • Laviola BG, Martinez HEP, Salomão LCC et al (2007) Alocação de fotoassimilados em folhas e frutos de cafeeiro cultivado em duas altitudes. Pesqui Agropecuária Bras 42:1521–1530

    Article  Google Scholar 

  • Leroy T, Ribeyre F, Bertrand B et al (2006) Genetics of coffee quality. Braz J Plant Physiol 18:229–242

    Article  CAS  Google Scholar 

  • Liu Y, Yao Y, Hu X et al (2015) Cloning and allelic variation of two novel catalase genes (SoCAT-1 and SsCAT-1) in Saccharum officinarum L. and Saccharum spontaneum L. Biotechnol Biotechnol Equip 29:431–440

    Article  CAS  Google Scholar 

  • Lu Y, Feng Z, Bian L et al (2011) miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. Funct Plant Biol 38:44

    Article  CAS  Google Scholar 

  • Martí MC, Camejo D, Olmos E et al (2009) Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits. Plant Biol 11:613–624

    Article  PubMed  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S et al (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Miller A-F (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mondal K, Sharma NS, Malhotra SP et al (2004) Antioxidant systems in ripening tomato fruits. Biol Plant 48:49–53

    Article  CAS  Google Scholar 

  • Mondal K, Malhotra SP, Jain V et al (2009) Oxidative stress and antioxidant systems in guava (Psidium guajava L.) fruits during ripening. Physiol Mol Biol Plants 15:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran JF, James EK, Rubio MC et al (2003) Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules. Plant Physiol 133:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Öncel I, Yurdakulol E, Keleş Y et al (2004) Role of antioxidant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecol 26:211–218

    Article  Google Scholar 

  • Paula MFB, Ságio SA, Lazzari F et al (2012) Efficiency of RNA extraction protocols in different types of coffee plant tissues. Coffee Sci 7:284–293

    Google Scholar 

  • Pezzopane JRM, Pedro Júnior MJ, Thomaziello RA et al (2003) Escala para avaliação de estádios fenológicos do cafeeiro arábica. Bragantia 62:499–505

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon M, Ravet K, Tapken W (2011) The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta Bioenerg 1807:989–998

    Article  CAS  Google Scholar 

  • Ságio SA, Lima AA, Barreto HG et al (2013) Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiol Plant 35:3091–3098

    Article  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M et al (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two cu/Zn superoxide dismutase genes in arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesfaye SG, Ismail MR, Kausar H et al (2013) Plant water relations, crop yield and quality in coffee ('Coffea arabica' L.) as influenced by partial root zone drying and deficit irrigation. Aust J Crop Sci 7:1361–1368

    Google Scholar 

  • Vaast P, Bertrand B, Perriot J-J et al (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86:197–204

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Willekens H, Inzé D, Van Montagu M et al (1995) Catalases in plants. Mol Breed 1:207–228

    Article  CAS  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T et al (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the “Instituto Nacional de Ciência e Tecnologia do Café (INCT-Café)”, the “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig)”, the “Coordenação de Aperfeiçoamento de Pessoal de nível Superior (CAPES)”, and the “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

MS, JA and AC-J conceived and designed the study. MS performed most of the experiments. HS, KS and LB performed the phenological and biochemical analysis. AL, BB, and HB contributed to the gene expression analysis. AL wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Antonio Chalfun-Junior.

Additional information

Communicated by: Philippe Lashermes

Electronic supplementary material

Table S1

(DOCX 21 kb)

Table S2

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M.O., de Oliveira Silveira, H.R., de Souza, K.R.D. et al. Antioxidant System Differential Regulation is Involved in Coffee Ripening Time at Different Altitudes. Tropical Plant Biol. 11, 131–140 (2018). https://doi.org/10.1007/s12042-018-9206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-018-9206-2

Keywords

Navigation