Tropical Plant Biology

, Volume 10, Issue 1, pp 45–55 | Cite as

Transcriptome Analysis of Sugarcane Response to the Infection by Sugarcane Steak Mosaic Virus (SCSMV)

  • Meng Dong
  • Guangyuan Cheng
  • Lei Peng
  • Qian Xu
  • Yongqing Yang
  • Jingsheng Xu
Article
  • 213 Downloads

Abstract

Sugarcane streak mosaic virus (SCSMV) is one of the pathogens causing sugarcane mosaic disease (SMD). Transcriptome of a susceptible sugarcane cultivar challenged by SCSMV was studied by high-throughput, paired-end RNA sequencing. Overall, we obtained 63,025 unigenes, including 14,384 unigenes measuring more than 1 kb each. We annotated 38,505 unigenes with COG, GO, KEGG, KOG, Pfam, Swiss-Prot and Nr. We screened 4982 differently expressed genes (DEGs) including 3841 annotated DEGs, of which 3791 were up-regulated, and 50 were down-regulated. The expression of DEGs in the three KEGG pathways, unbiquitin proteolytic system, proteasome and translational pathways in endoplasmic reticulum (ER) was investigated in response to stress and unfolded protein response (UPR). Interestingly, the DEGs in the 3 pathways were up-regulated. We tested eight DEGs encoding proteins in response to ER stress and UPR. We found that these genes were up-regulated in sugarcane challenged by SCSMV. This study presented the first report of the sugarcane transcriptome following SCSMV infection. It sheds light on the genetic mechanisms in sugarcane in response to SCSMV infection.

Keywords

Sugarcane SCSMV Transcriptome qRT-PCR 

Notes

Acknowledgements

We are grateful to the financial support by National High-tech R&D Program of China (863 Program) (2013AA102604), National Natural Science Foundation (31371688) and the earmarked fund for the Modern Agriculture Technology of China (CARS-20-1-1).

Author Contributions

MD and JX designed the research, analyze data and wrote the paper; GC, LP and QX performed the research; YY analyzed the data.

Supplementary material

12042_2016_9183_Fig6_ESM.jpg (495 kb)
Fig. S1

A. Virus detection of the tissue cultured sugarcane plantlets by RT-PCR. Lane 1, negative control. Lane 2–11 in up row, samples negative for SCMV and SrMV, respectively. Lane 2–11 in down row, in which lane 2–5 showing samples negative for SCSMV, while lane 2–5 showing samples positive for SCSMV. B. Sugarcane samples for qRT-PCR. Samples negative for SCMV in the up row. Samples negative for SrMV in the middle row. Samples positive for SCSMV in the basal row. (JPEG 495 kb)

12042_2016_9183_Fig7_ESM.jpg (435 kb)
Fig. S2

A. MA plot of DEGs. B. Volcano plot of gene expression between control and virus-infected sugarcane. (JPEG 434 kb)

12042_2016_9183_MOESM1_ESM.xlsx (10 kb)
Table S1 (XLSX 9 kb)
12042_2016_9183_MOESM2_ESM.xlsx (10 kb)
Table S2 (XLSX 9 kb)
12042_2016_9183_MOESM3_ESM.xlsx (183 kb)
Table S3 (XLSX 182 kb)
12042_2016_9183_MOESM4_ESM.xlsx (718 kb)
Table S4 (XLSX 718 kb)
12042_2016_9183_MOESM5_ESM.xlsx (10 kb)
Table S5 (XLSX 9 kb)
12042_2016_9183_MOESM6_ESM.xlsx (11 kb)
Table S6 (XLSX 10 kb)
12042_2016_9183_MOESM7_ESM.xlsx (31 kb)
Table S7 (XLSX 30 kb)
12042_2016_9183_MOESM8_ESM.xlsx (459 kb)
Table S8 (XLSX 458 kb)
12042_2016_9183_MOESM9_ESM.xlsx (17 kb)
Table S9 (XLSX 17 kb)

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Apweiler R, Bairoch A, Wu C, Barker W, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M (2004) The universal protein knowledge base. Nucleic Acids Res 32:D115–D119CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brandizzi F, Hanton S, Dasilva LLP, Boevink P, Evans D, Oparka K, Denecke J, Hawes C (2003) ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants. Plant J 34:269–281CrossRefPubMedGoogle Scholar
  5. Byun H, Ongqiang Gou Y, Zook A, Lozano MM, and Dudley JP (2015) ERAD and how viruses exploit it. The unfolded protein response in virus infections 78Google Scholar
  6. Cassone BJ, Chen Z, Chiera J, Stewart LR, Redinbaugh MG (2014) Responses of highly resistant and susceptible maize to vascular puncture inoculation with maize dwarf mosaic virus. Physiol Mol Plant Pathol 86:19–27CrossRefGoogle Scholar
  7. Chatenet M, Mazarin C, Girard J, Fernandez E, Gargani D, Rao G, Royer M, Lockhart B, Rott P (2005) Detection of sugarcane streak mosaic virus in sugarcane from several Asian countries. Sugar Cane International 23:12Google Scholar
  8. Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138:1866–1876CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chuang C, Barajas D, Qin J, Nagy PD (2014) Inactivation of the host lipin gene accelerates RNA virus replication through viral exploitation of the expanded endoplasmic reticulum membrane. PLoS Pathog 10:e1003944CrossRefPubMedPubMedCentralGoogle Scholar
  10. Damayanti TA, Putra LK (2011) First occurrence of sugarcane streak mosaic virus infecting sugarcane in Indonesia. J Gen Plant Pathol 77:72–74CrossRefGoogle Scholar
  11. Deng Y, Li J, Wu S, Zhu Y, Chen Y, He F (2006) Integrated nr database in protein annotation system and its localization. Comput Eng 32:71–74Google Scholar
  12. Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: a toolkit for illustrating heatmaps. PLoS One 9:e111988CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant Cell Environ 33:648–654CrossRefPubMedGoogle Scholar
  14. Diaz A, Wang X, Ahlquist P (2010) Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function. Proc Natl Acad Sci 107:16291–16296CrossRefPubMedPubMedCentralGoogle Scholar
  15. Diaz A, Zhang J, Ollwerther A, Wang X, Ahlquist P (2015) Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function. PLoS Pathog 11:e1004742CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dufresne PJ, Thivierge K, Cotton S, Beauchemin C, Ide C, Ubalijoro E, Laliberté JF, Fortin MG (2008) Heat shock 70 protein interaction with turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology 374:217–227CrossRefPubMedGoogle Scholar
  17. Ellgaard L, Helenius A (2001) ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13:431–437Google Scholar
  18. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191Google Scholar
  19. Fuchs E, and Grüntzig M (1995) Influence of sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) on the growth and yield of two maize varieties/Einfluß des Zuckerrohrmosaik-Virus (sugarcane mosaic virus, SCMV) und des Maisverzwergungsmosaik-Virus (maize dwarf mosaic virus, MDMV) auf Wachstum und Ertrag von zwei Maissorten. Z Pflanzenkr Pflanzenschutz/J Plant Dis Prot, 44–50Google Scholar
  20. García-Marcos A, Pacheco R, Martiáñez J, González-Jara P, Díaz-Ruíz JR, Tenllado F (2009) Transcriptional changes and oxidative stress associated with the synergistic interaction between potato virus X and potato virus Y and their relationship with symptom expression. Mol Plant-Microbe Interact 22:1431–1444CrossRefPubMedGoogle Scholar
  21. Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–U130CrossRefPubMedPubMedCentralGoogle Scholar
  22. Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberté J-F (2013) 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Front Microbiol 4:10.3389CrossRefGoogle Scholar
  23. Guo J, Ling H, Wu Q, Xu L, Que Y (2014) The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep 4:7042CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hall JS, Adams B, Parsons TJ, French R, Lane LC, Jensen SG (1998) Molecular cloning, sequencing, and phylogenetic relationships of a new potyvirus: sugarcane streak mosaic virus, and a reevaluation of the classification of the potyviridae. Mol Phylogenet Evol 10:323–332CrossRefPubMedGoogle Scholar
  25. Hashimoto M, Komatsu K, Iwai R, Keima T, Maejima K, Shiraishi T, Ishikawa K, Yoshida T, Kitazawa Y, Okano Y (2015) Cell death triggered by a putative amphipathic helix of radish mosaic virus helicase protein is tightly correlated with host membrane modification. Mol Plant-Microbe Interact 28:675–688CrossRefPubMedGoogle Scholar
  26. He Z, Li W, Yasaka R, Huang Y, Zhang Z, Ohshima K, Li S (2014) Molecular variability of sugarcane streak mosaic virus in China based on an analysis of the P1 and CP protein coding regions. Arch Virol 159:1149–1154CrossRefPubMedGoogle Scholar
  27. Hema M, Joseph J, Gopinath K, Sreenivasulu P, Savithri H (1999) Molecular characterization and interviral relationships of a flexuous filamentous virus causing mosaic disease of sugarcane (Saccharum officinarum L.) in India. Arch Virol 144:479–490CrossRefPubMedGoogle Scholar
  28. Hema M, Sreenivasulu P, Savithri HS (2002) Taxonomic position of sugarcane streak mosaic virus in the family potyviridae. Arch Virol 147:1997–2007CrossRefPubMedGoogle Scholar
  29. Iwata Y, Koizumi N (2012) Plant transducers of the endoplasmic reticulum unfolded protein response. Trends Plant Sci 17:720–727CrossRefPubMedGoogle Scholar
  30. Jin H, Yan Z, Hee K, Li J (2007) Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol Cell 26:821–830CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ju H-J, Samuels TD, Wang Y-S, Blancaflor E, Payton M, Mitra R, Krishnamurthy K, Nelson RS, Verchot-Lubicz J (2005) The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol 138:1877–1895CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A (2012) Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-seq. Plant Physiol 160:846–867CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030CrossRefPubMedGoogle Scholar
  35. Laliberté J-F, Sanfaçon H (2010) Cellular remodeling during plant virus infection. Annu Rev Phytopathol 48:69–91CrossRefPubMedGoogle Scholar
  36. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:1CrossRefGoogle Scholar
  37. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, Haag JD, Gould MN, Stewart RM, Kendziorski C (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29:1035–1043CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinf 12:1CrossRefGoogle Scholar
  39. Li W, He Z, Li S, Huang Y, Zhang Z, Jiang D, Wang X, Luo Z (2011) Molecular characterization of a new strain of sugarcane streak mosaic virus (SCSMV). Arch Virol 156:2101–2104CrossRefPubMedGoogle Scholar
  40. Liu Y, and Li J (2015). Endoplasmic reticulum-mediated protein quality control in Arabidopsis. Endoplasmic reticulum-shape and function in stress translation, 26Google Scholar
  41. Mandadi KK, Scholthof K-BG (2015) Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell 27:71–85CrossRefPubMedPubMedCentralGoogle Scholar
  42. Margariti A, Li H, Chen T, Martin D, Vizcay-Barrena G, Alam S, Karamariti E, Xiao Q, Zampetaki A, Zhang Z (2013) XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem 288:859–872CrossRefPubMedGoogle Scholar
  43. Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15:108–121CrossRefPubMedPubMedCentralGoogle Scholar
  44. Moreno AA, Orellana A (2011) The physiological role of the unfolded protein response in plants. Biol Res 44:75–80CrossRefPubMedGoogle Scholar
  45. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628CrossRefPubMedGoogle Scholar
  46. Oliver JD, Roderick HL, Llewellyn DH, High S (1999) ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 10:2573–2582CrossRefPubMedPubMedCentralGoogle Scholar
  47. Parmar VM, Schröder M (2012) "sensing endoplasmic reticulum stress," in self and Nonself. Springer, Berlin, pp. 153–168Google Scholar
  48. Parra-Rojas J, Moreno AA, Mitina I, Orellana A (2015) The dynamic of the splicing of bZIP60 and the proteins encoded by the spliced and Unspliced mRNAs reveals some unique features during the activation of UPR in Arabidopsis thaliana. PLoS One 10:e0122936CrossRefPubMedPubMedCentralGoogle Scholar
  49. Putra LK, Kristini A, Achadian EMA, Damayanti TA (2014) Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Tech 16:392–399CrossRefGoogle Scholar
  50. Ricaud C, Egan B, Gillaspie A, Hughes C (2012) Diseases of sugarcane: major diseases. Elsevier, AmsterdamGoogle Scholar
  51. Rott P (2000) A guide to sugarcane diseases. Editions Quae, VersaillesGoogle Scholar
  52. Sharma M, Sasvari Z, Nagy PD (2010) Inhibition of sterol biosynthesis reduces tombusvirus replication in yeast and plants. J Virol 84:2270–2281CrossRefPubMedGoogle Scholar
  53. Shi C, Ingvardsen C, Thümmler F, Melchinger AE, Wenzel G, Lübberstedt T (2005) Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol Gen Genomics 273:450–461CrossRefGoogle Scholar
  54. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36CrossRefPubMedPubMedCentralGoogle Scholar
  55. Urade R (2009) The endoplasmic reticulum stress signaling pathways in plants. Biofactors 35:326–331CrossRefPubMedGoogle Scholar
  56. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666CrossRefPubMedGoogle Scholar
  57. Uzarowska A, Dionisio G, Sarholz B, Piepho HP, Xu M, Ingvardsen CR, Wenzel G, Lubberstedt T (2009) Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling. BMC Plant Biol 9:15CrossRefPubMedPubMedCentralGoogle Scholar
  58. Verchot J (2012) Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. Front Plant Sci 3:10.3389CrossRefGoogle Scholar
  59. Verchot J (2014) The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. Front Plant Sci 5:66CrossRefPubMedPubMedCentralGoogle Scholar
  60. Verchot J (2016) How does the stressed out ER find relief during virus infection? Curr Opin Virol 17:74–79CrossRefPubMedGoogle Scholar
  61. Vidal RL, Hetz C (2012) Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease. Autophagy 8:970–972CrossRefPubMedPubMedCentralGoogle Scholar
  62. Viswanathan R, Balamurakrishnan M, Karuppaiah R (2007) Sugarcane mosaic in India: a cause of combined infection of sugarcane mosaic virus and sugarcane streak mosaic virus. Sugar Cane International 25:2Google Scholar
  63. Viswanathan R, Balamuralikrishnan M, Karuppaiah R (2008) Characterization and genetic diversity of sugarcane streak mosaic virus causing mosaic in sugarcane. Virus Genes 36:553–564CrossRefPubMedGoogle Scholar
  64. Wang X-C, Zhao Q-Y, Ma C-L, Zhang Z-H, Cao H-L, Kong Y-M, Yue C, Hao X-Y, Chen L, Ma J-Q (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wei T, Wang A (2008) Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI-and COPII-dependent manner. J Virol 82:12252–12264CrossRefPubMedPubMedCentralGoogle Scholar
  66. Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33:271–283CrossRefPubMedGoogle Scholar
  67. Wu L, Zu X, Wang S, Chen Y (2012) Sugarcane mosaic virus–long history but still a threat to industry. Crop Prot 42:74–78CrossRefGoogle Scholar
  68. Xu D-L, Zhou G-H, Xie Y-J, Mock R, Li R (2010) Complete nucleotide sequence and taxonomy of sugarcane streak mosaic virus, member of a novel genus in the family potyviridae. Virus Genes 40:432–439CrossRefPubMedGoogle Scholar
  69. Yang C, Guo R, Jie F, Nettleton D, Peng J, Carr T, Yeakley JM, Fan J-B, Whitham SA (2007) Spatial analysis of Arabidopsis thaliana gene expression in response to turnip mosaic virus infection. Mol Plant-Microbe Interact 20:358–370CrossRefPubMedGoogle Scholar
  70. Ye C, Dickman MB, Whitham SA, Payton M, Verchot J (2011) The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol 156:741–755CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhai Y, Deng Y, Cheng G, Peng L, Zheng Y, Yang Y, Xu J (2015) Sugarcane Elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun 466:312–318CrossRefPubMedGoogle Scholar
  72. Zhao L, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18:444–452CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Meng Dong
    • 1
  • Guangyuan Cheng
    • 1
  • Lei Peng
    • 1
  • Qian Xu
    • 1
  • Yongqing Yang
    • 1
  • Jingsheng Xu
    • 1
  1. 1.Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations