Tropical Plant Biology

, Volume 10, Issue 1, pp 30–44 | Cite as

New Insight Into Early Somatic Embryogenesis of Mangosteen (Garcinia mangostana) Through de Novo and Comparative Transcriptome Analyses

Article
  • 260 Downloads

Abstract

Somatic embryogenesis in mangosteen (Garcinia mangostana L.), an apomictic and recalcitrant-seeded species, allows stock improvement through genetic manipulation as well as mass propagation in a shortened time. To understand molecular events and gene expression during early somatic embryogenesis of mangosteen, we used RNA-Seq technology and assembled the mangosteen transcriptome de novo. Using the Trinity package, 186,203 transcripts were assembled with a mean size of 767 bp, 34.8 % of which showed significant similarities to known sequences in the GenBank non-redundant protein database. A total of 4001 transcripts were differentially expressed during somatic embryogenesis, while transcripts encoding signalling components of plant hormones such as auxin and cytokinin were significantly enriched. All the cytokinin-related genes were up-regulated, while some auxin-related genes were down-regulated and others were up-regulated. Somatic embryogenesis candidate genes such as SERK2, AGL15, CLVs, WUS and PIN1 were up-regulated in somatic embryos. Zinc finger and MADS family transcription factor genes were among the most presented differentially expressed transcripts in early somatic embryogenesis. Further qRT-PCR analysis confirmed the expression levels of the candidate genes. This study reports a de novo transcriptome assembly and analysis of gene expression during early somatic embryogenesis of mangosteen. Differentially expressed genes reveal that cytokinin has critical role in triggering somatic cell dedifferentiation and induction of somatic embryogenesis in mangosteen. The present work can serve as an important resource for further functional studies in woody plant embryogenesis.

Keywords

Differential gene expression De novo assembly Mangosteen RNA-seq Transcriptome Trinity 

Notes

Acknowledgments

This research was supported by Science Fund 02-01-02-SF0847 under the Ministry of Science, Technology and Innovation (MOSTI), and a Malaysia and Research University Grant under the Arus Perdana (AP-2012-018) from the Universiti Kebangsaan Malasyia. The authors thank the Malaysia Genome Institute, in particular Mr. Mohd Faizal Abu Bakar for his support during the bioinformatics analysis.

Supplementary material

12042_2016_9182_MOESM1_ESM.xlsx (47 kb)
Supplementary Material 1 (XLSX 46.7 kb)
12042_2016_9182_MOESM2_ESM.xlsx (37 kb)
Supplementary Material 2 (XLSX 37.4 kb)
12042_2016_9182_MOESM3_ESM.jpg (57 kb)
Supplementary Material 3 (JPG 57.3 kb)
12042_2016_9182_MOESM4_ESM.xlsx (1.1 mb)
Supplementary Material 4 (XLSX 1.13 mb)
12042_2016_9182_MOESM5_ESM.xlsx (49 kb)
Supplementary Material 5 (XLSX 48.9 kb)
12042_2016_9182_MOESM6_ESM.xlsx (94 kb)
Supplementary Material 6 (XLSX 94.4 kb)
12042_2016_9182_MOESM7_ESM.xlsx (59 kb)
Supplementary Material 7 (XLSX 58.7 kb)
12042_2016_9182_MOESM8_ESM.xlsx (16.6 mb)
Supplementary Material 8 (XLSX 16.6 mb)
12042_2016_9182_MOESM9_ESM.xlsx (51 kb)
Supplementary Material 9 (XLSX 50.5 kb)
12042_2016_9182_MOESM10_ESM.jpg (395 kb)
Supplementary Material 10 (JPG 395 kb)

References

  1. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. doi: 10.1093/bioinformatics/btu170 PubMedPubMedCentralGoogle Scholar
  2. Cabral GB, Carneiro VTC, Lacerda AL, do Valle CB, Martinelli AP, Dusi DMA (2011) Somatic embryogenesis and organogenesis in apomictic and sexual Brachiaria brizantha. Plant Cell Tiss Organ Cult 107:271–282. doi: 10.1007/s11240-011-9978-7 CrossRefGoogle Scholar
  3. Chen S-X, Wan M, Loh B-N (1996) Active constituents against HIV-1 protease from Garcinia mangostana. Planta Med 62:381–382. doi: 10.1055/s-2006-957916 CrossRefPubMedGoogle Scholar
  4. Chomnawang MT, Surassmo S, Nukoolkarn VS, Gritsanapan W (2007) Effect of Garcinia mangostana on inflammation caused by Propionibacterium acnes Fitoterapia 78:401–408 doi:http://dx.doi.org/ 10.1016/j.fitote.2007.02.019
  5. Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1Gene encodes a putative receptor kinase that controls shoot and floral meristem size in arabidopsis. Cell 89:575–585. doi: 10.1016/S0092-8674(00)80239-1 CrossRefPubMedGoogle Scholar
  6. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi: 10.1093/bioinformatics/bti610 CrossRefPubMedGoogle Scholar
  7. Correia S, Cunha A, Salgueiro L, Canhoto J (2012) Somatic embryogenesis in tamarillo (Cyphomandra betacea): approaches to increase efficiency of embryo formation and plant development. Plant Cell Tiss Organ Cult 109:143–152. doi: 10.1007/s11240-011-0082-9 CrossRefGoogle Scholar
  8. Davies P (2010) The plant hormones: their nature, occurrence, and functions. In: Davies P (ed) Plant hormones. Springer, Netherlands, pp 1–15. doi: 10.1007/978-1-4020-2686-7_1 CrossRefGoogle Scholar
  9. De Rybel B et al (2013) A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in arabidopsis. Dev Cell 24:426–437. doi: 10.1016/j.devcel.2012.12.013 CrossRefPubMedGoogle Scholar
  10. Elbl P et al (2015) Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine, Araucaria angustifolia (Bertol.). Kuntze Plant Cell Tiss Organ Cult 120:903–915. doi: 10.1007/s11240-014-0523-3 CrossRefGoogle Scholar
  11. Elhiti M, Tahir M, Gulden RH, Khamiss K, Stasolla C (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61:4069–4085. doi: 10.1093/jxb/erq222 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Elhiti M, Stasolla C, Wang A (2013) Molecular regulation of plant somatic embryogenesis. In Vitro Cell Dev Biol-Plant 49:631–642. doi: 10.1007/s11627-013-9547-3 CrossRefGoogle Scholar
  13. Elviana M, Rohani ER, Ismanizan I, Normah MN (2011) Morphological and histological changes during the somatic embryogenesis of mangosteen. Biol Plant 55:731–736. doi: 10.1007/s10535-011-0177-5 CrossRefGoogle Scholar
  14. Fehér A, Pasternak T, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org Cult 74:201–228. doi: 10.1023/A:1024033216561 CrossRefGoogle Scholar
  15. Forestan C, Varotto S (2011) The role of PIN Auxin efflux carriers in polar Auxin transport and accumulation and their effect on shaping maize. Dev Molec Plant 5:787–798. doi: 10.1093/mp/ssr103 CrossRefGoogle Scholar
  16. Gaj M, Zhang S, Harada J, Lemaux P (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988. doi: 10.1007/s00425-005-0041-y CrossRefPubMedGoogle Scholar
  17. Ge X-X, Chai L-J, Liu Z, Wu X-M, Deng X-X, Guo W-W (2012) Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray. Planta 236:1107–1124. doi: 10.1007/s00425-012-1661-7 CrossRefPubMedGoogle Scholar
  18. Goebel-Tourand I, Mauro M-C, Sossountzov L, Miginiac E, Deloire A (1993) Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP and zeatin in stimulating plantlet development. Plant Cell, Tissue Org Cult 33:91–103. doi: 10.1007/BF01997603 CrossRefGoogle Scholar
  19. GOH HKL, RAO AN, LOH CS (1988) In Vitro Plantlet Formation in Mangosteen (Garcinia mangostana L.). Ann Bot 62:87–93CrossRefGoogle Scholar
  20. Goh C-J, Lakshmanan P, Loh C-S (1994) High frequency direct shoot bud regeneration from excised leaves of mangosteen (Garcinia mangostana L.). Plant Sci 101:173–180. doi: 10.1016/0168-9452(94)90253-4 CrossRefGoogle Scholar
  21. Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech 29:644–652, http://www.nature.com/nbt/journal/v29/n7/abs/nbt.1883.html-supplementary-information CrossRefGoogle Scholar
  22. Gray DJ, Purohit A, Triglano RN (1991) Somatic embryogenesis and development of synthetic seed technology. Crit Rev Plant Sci 10:33–61. doi: 10.1080/07352689109382306 CrossRefGoogle Scholar
  23. Gutierrez-Orozco F, Failla ML (2013) Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients 5:3163–3183. doi: 10.3390/nu5083163 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Heck GR, Perry SE, Nichols KW, Fernandez DE (1995) AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7:1271–1282. doi: 10.2307/3870101 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hou R et al (2011) Transcriptome sequencing and de novo analysis for Yesso Scallop (Patinopecten yessoensis) Using 454 GS FLX. PLoS ONE 6:e21560. doi: 10.1371/journal.pone.0021560 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Huang L-C, Huang B-L, Wang C, Kuo C-I, Murashige T (2000) Developing an improved In vitro propagation system for slow-growing species using garcinia mangostana L. (mangosteen). In Vitro Cell Dev Biol-Plant 36:501–504. doi: 10.1007/s11627-000-0089-0 CrossRefGoogle Scholar
  27. Huang C, Jia Y, Yang S, Chen B, Sun H, Shen F, Wang Y (2007) Characterization of ZNF23, a KRAB-containing protein that is downregulated in human cancers and inhibits cell cycle progression. Exp Cell Res 313:254–263. doi: 10.1016/j.yexcr.2006.10.009 CrossRefPubMedGoogle Scholar
  28. Hudson ME, Lisch DR, Quail PH (2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 34:453–471. doi: 10.1046/j.1365-313X.2003.01741.x CrossRefPubMedGoogle Scholar
  29. Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Org Cult 33:105–119. doi: 10.1007/bf01983223 CrossRefGoogle Scholar
  30. Hutchinson MJ, Saxena PK (1996) Role of purine metabolism in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium × hortorum) hypocotyl cultures. Physiol Plant 98:517–522. doi: 10.1111/j.1399-3054.1996.tb05706.x CrossRefGoogle Scholar
  31. Ipekci Z, Gozukirmizi N (2003) Direct somatic embryogenesis and synthetic seed production from Paulownia elongata. Plant Cell Rep 22:16–24. doi: 10.1007/s00299-003-0650-5 CrossRefPubMedGoogle Scholar
  32. Iraqi D, Tremblay FM (2001) Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52:2301–2311. doi: 10.1093/jexbot/52.365.2301 CrossRefPubMedGoogle Scholar
  33. Jin F et al (2014a) Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. Plant Biotechnol J 12:161–173. doi: 10.1111/pbi.12123 CrossRefPubMedGoogle Scholar
  34. Jin J, Zhang H, Kong L, Gao G, Luo J (2014b) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187. doi: 10.1093/nar/gkt1016 CrossRefPubMedGoogle Scholar
  35. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi: 10.1093/nar/28.1.27 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205. doi: 10.1093/nar/gkt1076 CrossRefPubMedGoogle Scholar
  37. Kunieda T et al (2008) NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in arabidopsis. Plant Cell 20:2631–2642. doi: 10.1105/tpc.108.060160 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lagacé M, Matton D (2004) Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219:185–189. doi: 10.1007/s00425-004-1253-2 CrossRefPubMedGoogle Scholar
  39. Leibfried A et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175, http://www.nature.com/nature/journal/v438/n7071/suppinfo/nature04270_S1.html CrossRefPubMedGoogle Scholar
  40. Lenhard M, Bohnert A, Jürgens G, Laux T (2001) Termination of stem cell maintenance in arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814. doi: 10.1016/S0092-8674(01)00390-7 CrossRefPubMedGoogle Scholar
  41. Li B, Dewey C (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12; 323 doi:citeulike-article-id:9608780. doi:  10.1186/1471-2105-12-323
  42. Li Z, Thomas TL (1998) PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell 10:383–398PubMedPubMedCentralGoogle Scholar
  43. Lim AL (1984) The embryology of Garcinia Mangostana L. (Clusiaceae). U.S. Government Printing OfficeGoogle Scholar
  44. Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in arabidopsis. Science 318:1302–1305. doi: 10.1126/science.1146281 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu X et al (2011) AGAMOUS terminates floral stem cell maintenance in arabidopsis by directly repressing WUSCHEL through recruitment of polycomb group proteins. Plant Cell 23:3654–3670. doi: 10.1105/tpc.111.091538 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genomics 15:1–14. doi: 10.1186/1471-2164-15-805 Google Scholar
  47. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21:3448–3449. doi: 10.1093/bioinformatics/bti551 CrossRefPubMedGoogle Scholar
  48. Mahdavi-Darvari F, Noor N, Ismanizan I (2015) Epigenetic regulation and gene markers as signals of early somatic embryogenesis. Plant Cell Tiss Organ Cult 120:407–422. doi: 10.1007/s11240-014-0615-0 CrossRefGoogle Scholar
  49. Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie AMR, Krochko JE (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154. doi: 10.1104/pp.106.092932 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mari S, Engelmannl F, Chabrillangel N, Huet C, Michaux-Ferrière N (1995) Histo-cytological study of apices of coffee (Coffea racemosa and C. sessiliflora) in vitro plantlets during their cryopreservation using the encapsulation-dehydration technique. Cryo-Letters 16:289–298Google Scholar
  51. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517. doi: 10.1101/gr.079558.108 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the arabidopsis shoot meristem. Cell 95:805–815. doi: 10.1016/S0092-8674(00)81703-1 CrossRefPubMedGoogle Scholar
  53. Metzker ML (2010) Sequencing technologies [mdash] the next generation. Nat Rev Genet 11:31–46CrossRefPubMedGoogle Scholar
  54. Moongkarndi P, Kosem N, Kaslungka S, Luanratana O, Pongpan N, Neungton N (2004) Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line. J Ethnopharmacol 90:161–166. doi: 10.1016/j.jep.2003.09.048 CrossRefPubMedGoogle Scholar
  55. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  56. Murray SC, Eckhoff P, Wood L, Paterson AH (2013) A proposal to use gamete cycling in vitro to improve crops and livestock. Nat Biotech 31:877–880. doi: 10.1038/nbt.2707, http://www.nature.com/nbt/journal/v31/n10/abs/nbt.2707.html-supplementary-information CrossRefGoogle Scholar
  57. Murthy BNS, Murch SJ, Saxena PK (1995) Thidiazuron-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94:268–276. doi: 10.1111/j.1399-3054.1995.tb05311.x CrossRefGoogle Scholar
  58. Normah MN, Nor-Azza AB, Aliudin R (1995) Factors affecting in vitro shoot proliferation and ex vitro establishment of mangosteen. Plant Cell Tissue Org Cult 43:291–294. doi: 10.1007/BF00039958 Google Scholar
  59. Ouyang X et al (2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in arabidopsis development. Plant Cell 23:2514–2535. doi: 10.1105/tpc.111.085126 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Park S, Harada J (2008) Arabidopsis embryogenesis. In: Suárez M, Bozhkov P (eds) Plant embryogenesis, vol 427. Methods in molecular biology™. Humana Press, pp 3–16. doi: 10.1007/978-1-59745-273-1_1
  61. Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LGG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827. doi: 10.1093/nar/gkp805 CrossRefPubMedGoogle Scholar
  62. Perry SE, Lehti MD, Fernandez DE (1999) The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. Plant Physiol 120:121–130CrossRefPubMedPubMedCentralGoogle Scholar
  63. Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688. doi: 10.1242/dev.030353 CrossRefPubMedGoogle Scholar
  64. Quiroz-Figueroa F, Méndez-Zeel M, Sánchez-Teyer F, Rojas-Herrera R, Loyola-Vargas VM (2002) Differential gene expression in embryogenic and non-embryogenic clusters from cell suspension cultures ofCoffea arabica. J Plant Physiol 159:1267–1270. doi: 10.1078/0176-1617-00878 CrossRefGoogle Scholar
  65. Quiroz-Figueroa F, Rojas-Herrera R, Galaz-Avalos R, Loyola-Vargas V (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Org Cult 86:285–301. doi: 10.1007/s11240-006-9139-6 CrossRefGoogle Scholar
  66. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi: 10.1093/bioinformatics/btp616 CrossRefPubMedGoogle Scholar
  67. Rocha D, Monte-Bello C, Dornelas M (2015) Alternative induction of de novo shoot organogenesis or somatic embryogenesis from in vitro cultures of mature zygotic embryos of passion fruit (Passiflora edulis Sims) is modulated by the ratio between auxin and cytokinin in the medium. Plant Cell Tiss Organ Cult 120:1087–1098. doi: 10.1007/s11240-014-0663-5 CrossRefGoogle Scholar
  68. Rohani E, Ismanizan I, Noor N (2012) Somatic embryogenesis of mangosteen. Plant Cell Tiss Organ Cult 110:251–259. doi: 10.1007/s11240-012-0147-4 CrossRefGoogle Scholar
  69. Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269. doi: 10.1105/tpc.7.8.1259 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS ONE 9:e111407. doi: 10.1371/journal.pone.0111407 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schellenbaum P, Jacques A, Maillot P, Bertsch C, Mazet F, Farine S, Walter B (2008) Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep 27:1799–1809. doi: 10.1007/s00299-008-0588-8 CrossRefPubMedGoogle Scholar
  72. Schlereth A et al (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–916, http://www.nature.com/nature/journal/v464/n7290/suppinfo/nature08836_S1.html CrossRefPubMedGoogle Scholar
  73. Schmidt EL, de Jong A, de Vries S (1994) Signal molecules involved in plant embryogenesis. In: Palme K (ed) Signals and signal transduction pathways in plants. Springer, Netherlands, pp 69–77. doi: 10.1007/978-94-011-0239-1_4 CrossRefGoogle Scholar
  74. Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062PubMedGoogle Scholar
  75. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL. Genes Cell 100:635–644. doi: 10.1016/S0092-8674(00)80700-X PubMedGoogle Scholar
  76. Shi C-Y et al (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131CrossRefPubMedPubMedCentralGoogle Scholar
  77. Siriwardana S, Nabors MW (1983) Tryptophan enhancement of somatic embryogenesis in rice. Plant Physiol 73:142–146CrossRefPubMedPubMedCentralGoogle Scholar
  78. Smith PM, Atkins CA (2002) Purine biosynthesis. big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128:793–802CrossRefPubMedPubMedCentralGoogle Scholar
  79. Srivastava LM (2002) Chapter 3 - embryogenesis. In: Srivastava LM (ed) Plant growth and development. Academic, San Diego, pp 75–92. doi: 10.1016/B978-012660570-9/50143-X CrossRefGoogle Scholar
  80. Strickland SG, Nichol JW, McCall CM, Stuart DA (1987) Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci 48:113–121CrossRefGoogle Scholar
  81. Su YH, Zhang XS (2009) Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signal Behav 4:574–576CrossRefPubMedPubMedCentralGoogle Scholar
  82. Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460. doi: 10.1111/j.1365-313X.2009.03880.x CrossRefPubMedPubMedCentralGoogle Scholar
  83. Suksamrarn S, Komutiban O, Ratananukul P, Chimnoi N, Lartpornmatulee N, Suksamrarn A (2006) Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull 54:301–305. doi: 10.1248/cpb.54.301 CrossRefPubMedGoogle Scholar
  84. Sun L et al (2012) Differential gene expression during somatic embryogenesis in the maize (Zea mays L.) inbred line H99. Plant Cell Tiss Organ Cult 109:271–286. doi: 10.1007/s11240-011-0093-6 CrossRefGoogle Scholar
  85. Thakare D, Tang W, Hill K, Perry SE (2008) The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in arabidopsis and soybean. Plant Physiol 146:1663–1672. doi: 10.1104/pp.108.115832 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Victor JMR, Murthy BNS, Murch SJ, KrishnaRaj S, Saxena PK (1999) Role of endogenous purine metabolism in thidiazuron-induced somatic embryogenesis of peanut (Arachis hypogaea L.). Plant Growth Regul 28:41–47. doi: 10.1023/a:1006251531319 CrossRefGoogle Scholar
  87. Viktor Nørgaard J, Krogstrup P (1991) Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmanniana Lk. Plant Cell Rep 9:509–513. doi: 10.1007/BF00232107 CrossRefPubMedGoogle Scholar
  88. Vondráková Z, Eliášová K, Fischerová L, Vágner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Centeurjbiol 6:587–596. doi: 10.2478/s11535-011-0035-7 Google Scholar
  89. Wang X, Niu Q-W, Teng C, Li C, Mu J, Chua N-H, Zuo J (2009a) Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. Cell Res 19:224–235. http://www.nature.com/cr/journal/v19/n2/suppinfo/cr2008276s1.html CrossRefPubMedGoogle Scholar
  90. Wang Z, Gerstein M, Snyder M (2009b) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi: 10.1038/nrg2484 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang JJ, Shi QH, Zhang W, Sanderson BJS (2012) Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.). Food Chem Toxicol 50:3004–3013. doi: 10.1016/j.fct.2012.06.003 CrossRefPubMedGoogle Scholar
  92. Weigel D, Jurgens G (2002) Stem cells that make stems. Nature 415:751–754CrossRefPubMedGoogle Scholar
  93. Willemsen V, Scheres B (2004) Mechanisms of pattern formation in plant embryogenesis. Annu Rev Genet 38:587–614. doi: 10.1146/annurev.genet.38.072902.092231 CrossRefPubMedGoogle Scholar
  94. Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 35:253–289. doi: 10.1080/10409230008984165 CrossRefPubMedGoogle Scholar
  95. Xie C et al (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322. doi: 10.1093/nar/gkr483 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Xu R, Quinn Li Q (2003) A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol 53:37–50. doi: 10.1023/B:PLAN.0000009256.01620.a6 CrossRefPubMedGoogle Scholar
  97. Xu Z et al (2013) Transcriptome profiling reveals auxin and cytokinin regulating somatic embryogenesis in different sister lines of cotton cultivar CCRI24. J Integr Plant Biol 55:631–642. doi: 10.1111/jipb.12073 CrossRefPubMedGoogle Scholar
  98. Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57. doi: 10.1080/07352680903436291 CrossRefGoogle Scholar
  99. Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12:1–19. doi: 10.1186/1471-2229-12-110 CrossRefGoogle Scholar
  100. Ye J et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297. doi: 10.1093/nar/gkl031 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60:167–183. doi: 10.1007/s11103-005-3381-x CrossRefPubMedGoogle Scholar
  102. Zhang Y, Zhang S, Han S, Li X, Qi L (2012) Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Rep 31:1637–1657. doi: 10.1007/s00299-012-1277-1 CrossRefPubMedGoogle Scholar
  103. Zheng W et al (2014) AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS ONE 9:e87502. doi: 10.1371/journal.pone.0087502 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Systems Biology (INBIOSIS)Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations