Skip to main content
Log in

Cassava Breeding: Current Status, Bottlenecks and the Potential of Biotechnology Tools

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Cassava is an important energy source in the diets of millions of people in tropical and subtropical regions of the world. It is a key subsistence crop, and its industrial uses are steadily growing. In spite of its economic and social relevance, relatively little investment has been made for research on cassava. However, conventional breeding resulted in more stable production through enhanced tolerance to biotic and abiotic stresses; increased productivity, both in fresh root production and increased dry matter content; and, more recently, improvements in qualitative traits such as starch quality and increased carotenoids content. The inbreeding of cassava has been identified as a key step for more efficient genetic improvement of the crop, therefore, research is underway to develop protocol(s) for the production of doubled haploids. Marker-assisted selection has been successfully applied to cassava, but in a more modest scale compared with other crops. More support and emphasis is needed on practical applications of molecular marker technology in cassava improvement. The availability of more efficient genotyping approaches and the cassava genome sequence promise to increase the impact of biotechnology tools on cassava improvement. Efficient and reliable phenotyping of cassava remains a challenging goal to achieve in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AYT:

Advanced yield trial

CBSD:

Cassava Brown Streak Disease

CET:

clonal evaluation trial

CMD:

Cassava Mosaic Disease

DMC:

dry matter content

FSD:

Frogskin Disease

LAC:

Latin America and the Caribbean

MAS:

marker-assisted selection

PPD:

post-harvest physiological deterioration

PYT:

preliminary yield trial

QTL:

quantitative trait loci

RT:

regional trial

TILLING:

Targeted Induced Local Lesions in Genome

References

  • Allem AC (2002) The origins and taxonomy of cassava. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United Kingdom

    Google Scholar 

  • Alvarez E, Llano G (2002) Enfermedades del cultivo de la yuca y métodos de control. In: Ospina B, Ceballos H (eds) La Yuca en el Tercer Milenio. Centro Internacional de Agricultura Tropical, Cali, Colombia

    Google Scholar 

  • Alvarez E, Mejía JF, Llano GA, Loke JB, Calari A, Duduk B, Bertaccini (2009) Characterization of a Phytoplasma associated with frogskin disease in dassava. Plant Dis 93:1139–1145

    CAS  Google Scholar 

  • Alves AAC (2002) Cassava botany and physiology. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United Kingdom

    Google Scholar 

  • Alves AAC, Setter TL (2000) Response of cassava to water deficit: leaf area growth and abscisic acid. Crop Sci 40:131–137

    Google Scholar 

  • Alzate-G AM, Vallejo-Cabrera FA, Ceballos-Lascano H, Pérez JC, Fregene M (2010) Variabilidad genética de la yuca cultivada por pequeños agricultores de la región Caribe de Colombia. Acta Agronómica 59(4):385–393

    Google Scholar 

  • Beeching JR, Yuanhuai H, Gómez-Vázquez R, Day RC, Cooper RM (1998) Wound and defense responses in cassava as related to post-harvest physiological deterioration. In: Romeo JT, Downum KR, Verpporte R (eds) Recent advances in phytochemistry. phytochemical signals in plant-microbe interactions, vol. 32. Plenum Press, New York-London, pp 231–248

    Google Scholar 

  • Bellotti AC (2002) Arthropod pests. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United Kingdom

    Google Scholar 

  • Bellotti AC, Arias-V B, Vargas-H O, Reyes-Q JA, Guerrero JM (2002) Insectos y ácaros dañinos a la yuca y su control. In: Ospina B, Ceballos H (eds) La Yuca en el Tercer Milenio. Centro Internacional de Agricultura Tropical, Cali, Colombia

    Google Scholar 

  • Blair MW, Fregene MA, Beebe SE, Ceballos H (2007) Marker assisted selection in common beans and cassava. In: Guimaraes EP, Ruane J, Scherf BD, Sonnino A, Dargie JD (eds) Marker-assisted selection (MAS) in crops, livestock, forestry and fish: current status and the way forward. FAO, Via Caravalle, Rome, Italy

    Google Scholar 

  • Botha-M L, Whitehead CS, Haley AH (1998) Effect of octanoic acid on ethylene-mediated flower induction in Dutch iris. Plant Growth Regul 25:47–51

    Google Scholar 

  • Cach NT, Perez JC, Lenis JI, Calle F, Morante N, Ceballos H (2005) Epistasis in the expression of relevant traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J Hered 96:586–592

    PubMed  CAS  Google Scholar 

  • Cach TN, Lenis JI, Perez JC, Morante N, Calle C, Ceballos H (2006) Inheritance of relevant traits in cassava (Manihot esculenta Crantz) for sub-humid conditions. Plant Breed 124:1–6

    Google Scholar 

  • Calderón-Urrea A (1988) Transformation of Manihot esculenta (cassava) using Agrobactrium tumefaciens and expression of the introduced foreign genes in transformed cell lines. MSc thesis. Vrije University. Brussels. Belgium

  • Calle F, Pérez JC, Gaitán W, Morante N, Ceballos H, Llano G, Alvarez E (2005) Diallel inheritance of relevant traits in cassava (Manihot esculenta Crantz) adapted to acid-soil savannas. Euphytica 144(1–2):177–186

    Google Scholar 

  • Calvert LA, Thresh JM (2002) The viruses and virus diseases of cassava. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United Kingdom

    Google Scholar 

  • Calvert LA, Cuervo M, Lozano I, Villareal N, Arroyave J (2008) Identification of three strains of a virus associated with cassava plants affected by frogskin disease. J Phytopath 156:647–653

    CAS  Google Scholar 

  • Carvalho LJCB, de Souza CRB, Cascardo JCM, Junior CB, Campos L (2004) Identification and characterization of a novel cassava (Manihot esculenta Crantz) clone with high free sugar content and novel starch. Plant Mol Biol 56:643–659

    PubMed  CAS  Google Scholar 

  • Ceballos H, Iglesias CA, Pérez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–515

    PubMed  CAS  Google Scholar 

  • Ceballos H, Fregene M, Lentini Z, Sánchez T, Puentes YI, Pérez JC, Rosero A, Tofiño AP (2006a) Development and identification of high-value cassava clones. Acta Horticulturae 703:63–70

    Google Scholar 

  • Ceballos H, Sánchez T, Chávez AL, Iglesias C, Debouck D, Mafla G, Tohme J (2006b) Variation in crude protein content in cassava (Manihot esculenta Crantz) roots. J Food Compos Anal 19:589–593

    CAS  Google Scholar 

  • Ceballos H, Fregene M, Pérez JC, Morante N, Calle F (2007a) Cassava genetic improvement. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell Publishing, Ames, IA. USA

    Google Scholar 

  • Ceballos H, Sánchez T, Morante N, Fregene M, Dufour D, Smith AM, Denyer K, Pérez JC, Calle F, Mestres C (2007b) Discovery of an Amylose-free Starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 55(18):7469–7476

    PubMed  CAS  Google Scholar 

  • Ceballos H, Sánchez T, Denyer K, Tofiño AP, Rosero EA, Dufour D, Smith A, Morante N, Pérez JC, Fahy B (2008) Induction and identification of a small-granule, high-amylose mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 56(16):7215–7222

    PubMed  CAS  Google Scholar 

  • Ceballos H, Okogbenin E, Pérez JC, Becerra LA, Debouck D (2010) Cassava. In: Bradshaw J (ed) Root and tuber crops. Springer Publishers, New York

    Google Scholar 

  • Ceballos H, Ramirez J, Bellotti AC, Jarvis A, Alvarez E (2011a) Adaptation of cassava to changing climates. In: Yadav SS, Redden B, Hatfield JS, Lotze-Campen G, Hall A (eds) Crop adaptation to climate change. Wiley–Blackwell, Hoboken, New Jersey

    Google Scholar 

  • Ceballos H, Chavarriaga P, Lorenzen J, Tripathi L, Chan S (2011b) Fast breeding for slow crops – Doubled haploids in cassava and banana. In: Abstracts of the 2nd Annual BREAD Meeting. National Science Foundation/Bill & Melinda Gates Foundation. Seattle, USA. July 13–15, 2011

  • Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC (2005) Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. J Agric Food Chem 53:2717–2725

    PubMed  CAS  Google Scholar 

  • Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños EA, Ceballos H, Iglesias CA (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143:125–133

    Google Scholar 

  • CIAT, Centro Internacional de Agricultura Tropical (2001) Project IP3, Improved Cassava for the Developing World, Annual Report 2001. Apdo Aéreo 6713, Cali, Colombia

  • Cock JH, Porto MCM, El-Sharkawy MA (1985) Water use efficiency of cassava. III Influence of air humidity and water stress on gas exchange of field grown cassava. Crop Sci 25:265–272

    Google Scholar 

  • Contreras Rojas M, Pérez JC, Ceballos H, Baena D, Morante N, Calle F (2009) Introduction of inbreeding and analysis of inbreeding depression in eight S1 cassava families. Crop Sci 49:543–548

    Google Scholar 

  • De Carvalho RD, Guerra M (2002) Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species. Hereditas 136:159–168

    PubMed  Google Scholar 

  • DeVires J, Toenniessen G (2001) Securing the harvest: biotechnology, breeding and seed systems for African crops. CABI Publishing Oxon, UK and New York, USA

    Google Scholar 

  • Dixon AGO, Asiedu R, Bokanga M (1994) Breeding of cassava for low cyanogenic potential: problems, progress and perspectives. Acta Hort 375:153–161

    CAS  Google Scholar 

  • Dukovski D, Bemarzky R, Han S (2006) Flowering induction of Guzmania by ethylene. Scientia Hort 110:104–108

    CAS  Google Scholar 

  • Easwari Amma CS, Sheela MN (1993) Heterosis in cassava: nature and magnitude. p. 88–94. In: Abstracts of the Symposium on Tropical Tuber Crops: Problems, Prospects and Future Strategies. International Society for Tropical Root Crops ISRTC, Trivandrum, India. 6-9 November, 1993

  • Easwari Amma CS, Sheela MN (1995) Combining ability, heterosis and gene action for three major quality traits in cassava. J Root Crops 21(1):24–29

    Google Scholar 

  • Easwari Amma CS, Sheela MN (1998) Genetic analysis in a diallel cross of inbred lines of cassava. Madras Agr J 85:264–268

    Google Scholar 

  • Easwari Amma CS, Sheela MN, Thankamma Pillai PK (1995) Combining ability analysis in cassava. J Root Crops 21(2):65–71

    Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163

    Google Scholar 

  • Egesi CN, Ogbe FO, Akoroda M, Ilona P, Dixon A (2007) Resistance profile of improved cassava germplasm to cassava mosaic disease in Nigeria. Euphytica 155:215–224

    Google Scholar 

  • El-Sharkawy MA (2006) International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stress in the tropics. Photosynthetica 44:481–512

    CAS  Google Scholar 

  • El-Sharkawy MA, Cock JH (1984) Water use efficiency of cassava. I Effects of air humidity and water stress on stomatal conductance and gas exchange. Crop Sci 25:265–272

    Google Scholar 

  • El-Sharkawy MA, Mejía de Tafur S (2010) Comparative photosynthesis, growth, productivity and nutrient use efficiency among tall- and short-stemmed raid-fed cassava cultivars. Photosynthetica 48:173–188

    Google Scholar 

  • Fehr WR (ed) (1987) Genetic contributions to yield gains of five mayor crop plants. Crop Science Society of America, Madison, WI, USA

    Google Scholar 

  • Flavell R (2008) The cassava plants of tomorrow. In: Abstracts of the First Scientific Meeting of the Global Cassava Partnership GCP-1.Ghent, Belgium 21–25 July

  • Fregene M, Puonti-Kaerlas J (2002) Cassava biotechnology. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United Kingdom

    Google Scholar 

  • Fregene M, Angel F, Gomez R, Rodríguez F, Chavarriaga P, Roca W, Tohme J (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Gen 95:431–441

    CAS  Google Scholar 

  • Fregene M, Bernal A, Duque M, Dixon A, Tohme J (2000) AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor Appl Gen 100:678–685

    CAS  Google Scholar 

  • Fregene M, Matsumura H, Akano A, Dixon A, Terauchi R (2004) Serial analysis of gene expression (SAGE) of host-plant resistance to the cassava mosaic disease (CMD). Plant Mol Biol 56:563–571

    PubMed  CAS  Google Scholar 

  • Gonçalves Fukuda WM, de Oliveira, Silva S, Iglesias C (2002) Cassava breeding. Crop Breed Appl Biotech 2(4):617–638

    Google Scholar 

  • Gonçalvez Fukuda WM, Saad N (2001) Participatory research in cassava breeding with farmers in Northeastern Brazil. Document CNPMF No. 99. EMBRAPA, Cruz das Almas. Bahia, Brazil

  • Gonçalvez Fukuda, WM, Fukuda C, Leite-Cardoso CE, Lima-Vanconcelos O, Nunes LC (2000) Implantação e evolução dos trabalhos de pesquisa participativa em melhoramento de mandioca no nordeste Brasileiro. Documento CNPMF No. 92. EMBRAPA, Cruz das Almas. Bahia, Brazil

  • Hahn SK, Terry ER, Leuschner K, Akobundu IO, Okali C, Lal R (1979) Cassava improvement in Africa. Field Crop Res 2:193–226

    Google Scholar 

  • Hahn SK, Terry ER, Leuschner K (1980a) Breeding cassava for resistance to cassava mosaic disease. Euphytica 29:673–683

    Google Scholar 

  • Hahn SK, Howland AK, Terry ER (1980b) Correlated resistance to cassava to mosaic and bacterial blight diseases. Euphytica 29:305–311

    Google Scholar 

  • Hahn SK, Bai KV, Asiedu R (1990) Tetraploids, triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor Appl Gen 79:433–439

    Google Scholar 

  • Hallauer AR, Miranda Fo JB (1988) Quantitative genetics in maize breeding, Secondth edn. Iowa State University Press, USA, pp 45–114

    Google Scholar 

  • Heffner EL, Sorrels ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    CAS  Google Scholar 

  • Herrera-Campo V, Hyman G, Bellotti A (2011) Threats to cassava production known and potential geographic distribution of four key biotic constraints. Food Sec. doi:10.1007/s12571-011-0141-4

  • Hershey CH (1984) Breeding cassava for adaptation to stress conditions: development of a methodology. In: Abstracts of the 6th Symposium of the International Society for Tropical Root Crops. Lima, Peru. 20-25 February, 1983

  • Hilloocks RJ, Wydra K (2002) Bacterial, fungal and nematode diseases. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United Kingdom

    Google Scholar 

  • Hirose S, Data ES, Quevedo MA (1984) Changes in respiration and ethylene production in cassava roots. In: Uritani I, Reyes ED (eds) Tropical root crops: postharvest physiology and processing. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267

    CAS  Google Scholar 

  • Howeler RH (2002) Cassava mineral nutrition and fertilization. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United Kingdom

    Google Scholar 

  • Iglesias CA, Hershey C (1994) Cassava breeding at CIAT: heritability estimates and genetic progress in the 1980’s. In: Ofori F, Hahn SK (eds) Tropical root crops in a developing economy. ISTRC/ISHS, Wageningen, Netherlands

    Google Scholar 

  • Iglesias CA, Mayer J, Chávez AL, Calle F (1997) Genetic potential and stability of carotene content in cassava roots. Euphytica 94:367–373

    CAS  Google Scholar 

  • Jaramillo G, Morante N, Pérez JC, Calle F, Ceballos H, Arias B, Bellotti AC (2005) Diallel analysis in cassava adapted to the mid-altitude valleys environment. Crop Sci 45:1058–1063

    Google Scholar 

  • Jennings DL (1963) Variation in pollen and ovule fertility in varieties of cassava, and the effect of interspecific crossing on fertility. Euphytica 12:69–76

    Google Scholar 

  • Jennings DL, Iglesias CA (2002) Breeding for crop improvement. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United Kingdom

    Google Scholar 

  • Kawano K (1980) Cassava. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. ASA, CSSA, Madison, Wisconsin

    Google Scholar 

  • Kawano K (2003) Thirty years of cassava breeding for productivity – biological and social factors for success. Crop Sci 43:1325–1335

    Google Scholar 

  • Kawano K, Cock JH (2005) Breeding cassava for underprivileged: institutional, socio-economic and biological factors for success. J Crop Improv 14:197–219

    Google Scholar 

  • Kawano K, Daza P, Amaya A, Ríos M, Gonçalvez MF (1978) Evaluation of cassava germplasm for productivity. Crop Sci 18:377–380

    Google Scholar 

  • Kawano K, Narintaraporn K, Narintaraporn P, Sarakarn S, Limsila A, Limsila J, Suparhan D, Sarawat V, Watananonta W (1998) Yield improvement in a multistage breeding program for cassava. Crop Sci 38(2):325–332

    Google Scholar 

  • Kawuki RS, Ferguson M, Labuschagne M, Herselman L, Kim DJ (2009) Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breeding 23:669–684

    CAS  Google Scholar 

  • Lancaster PA, Brooks JE (1983) Cassava leaves as human food. Econ Bot 37(3):331–348

    Google Scholar 

  • Lenis JI, Calle F, Jaramillo G, Pérez JC, Ceballos H, Cock J (2006) Leaf retention and cassava productivity. Field Crops Res 95(2–3):126–134

    Google Scholar 

  • Léotard G, Duputié A, Kjellberg F, Douzery EJP, Debain C, de Granville JJ, McKey D (2009) Phylogeography and the origin of cassava: new insights form the northern rim of the Amazon basin. Mol Phylogen Evolut 53:329–334

    Google Scholar 

  • Losada-V. T (1990) Cruzamentos dialélicos em mandioca (Manihot esculenta Crantz). (Ph.D. diss.). Piracicaba, SP, Brazil. Escola Superior de Agricultura Luiz de Queiroz. Univ. São Paulo, Brazil

  • Magoon ML, Krishnan R, Bai KV (1969) Morphology of the pachytene chromosomes and meiosis in Manihot esculenta Crantz. Cytologia 34:612–626

    Google Scholar 

  • Mba REC, Stephenson P, Edwards K, Melzer S, Mkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31

    CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    PubMed  CAS  Google Scholar 

  • McSween S, Walker T, Salegua V, Pitoro R (2006) Economic impact on food security of varietal tolerance to cassava brown streak disease in coastal Mozambique. Research Report Series No. 1E. Institute of Agricultural Research of Mozambique. Maputo, Mozambique

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497

    PubMed  CAS  Google Scholar 

  • Morante N, Moreno X, Perez JC, Calle F, Lenis JI, Ortega E, Jaramillo G, Ceballos H (2005) Precision of selection in early stages of cassava genetic improvement. J Root Crops 31:81–92

    Google Scholar 

  • Morante N, Sánchez T, Ceballos H, Calle F, Pérez JC, Egesi C, Cuambe CE, Escobar AF, Ortiz D, Chávez AL (2010) Tolerance to post-harvest physiological deterioration in cassava roots. Crop Sci 50:1333–1338

    Google Scholar 

  • Morillo-C AC, Morillo-C Y, Fregene M, Ramírez H, Chávez AL, Sánchez T, Morante N, Ceballos-L H (2011a) Diversidad genética y contenido de carotenos totales en accesiones del germoplasma de yuca (Manihot esculenta Crantz). Acta Agronómica 60(2):97–107

    Google Scholar 

  • Morillo-C AC, Morillo-C Y, Fregene M, Ramirez H, Chávez AL, Sánchez T, Morante N, Ceballos-L H (2011b) Diversidad genética y contenido de carotenos totales en accesiones del germoplasma de yuca (Manihot esculenta Crantz). Acta Agronómica 60(2):97–107

    Google Scholar 

  • Nassar NMA (1978) Conservation of the genetic resources of cassava (Manihot esculenta): determination of wild species localities with emphasis on probably origin. Econ Bot 32:311–320

    Google Scholar 

  • Nassar NMA, Ortiz R (2008) Cassava genetic resources: manipulation for crop improvement. Pl Breeding Rev 31:247–275

    Google Scholar 

  • Ngudi DD, Kuo-H Y, Lambein F (2003) Amino acid profiles and protein quality of cooked cassava leaves or ‘saka-saka’. J Sci Food Agric 83:529–534

    CAS  Google Scholar 

  • Nyiira ZM (1975) Advances in research on the economic significance of the green cassava mite Mononychellus tanajoa Bondar in Uganda. International exchange and testing of cassava germplasm in Africa. In: E.R. Terry and R. MacIntyre (Eds.), Proceedings of an interdisciplinary Workshop. Ibadan, Nigeria, 17-21. November 1975. IDRC-063e, Ottawa, Canada, pp 22-29

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci (USA) 96:5586–5591

    CAS  Google Scholar 

  • Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am J Bot 88(1):131–142

    PubMed  Google Scholar 

  • Pandey S, Gardner CO (1992) Recurrent selection for population, variety and hybrid improvement in tropical maize. Adv Agron 48:1–87

    Google Scholar 

  • Peng Z, Xiao-Guang D, Qian X, Z. Shan Shan Z, Dong A, Jia X, Qiu-Xiang M (2008) Development of cassava biotechnology and functional genomics in China. In: Abstracts of 8th Asian Cassava Research Workshop. Vientiane, LAO PDR. 20-24 October, 2008

  • Pérez JC, Ceballos H, Calle F, Morante N, Gaitán W, Llano G, Alvarez E (2005a) Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 145:77–85

    Google Scholar 

  • Pérez JC, Ceballos H, Jaramillo G, Morante N, Calle F, Arias B, Bellotti AC (2005b) Epistasis in cassava adapted to mid-altitude valley environments. Crop Sci 45:1491–1496

    Google Scholar 

  • Pérez JC, Lenis JI, Calle F, Morante N, Sánchez T, Debouck D, Ceballos H (2011) Heritability of root peel thickness and its influence in extractable starch from cassava (Manihot esculenta Crantz) roots. Plant Breed 130:688–693

    Google Scholar 

  • Peroni FHG, Rocha TS, Franco CML (2006) Some structural and physicochemical characteristics of tuber and root starches. Food Sci Tech Int 12(6):505–513

    CAS  Google Scholar 

  • Posada CA, López-G A, Ceballos H (2006) Influencia de harinas de yuca y de batata sobre pigmentación, contenido de carotenoides en la yema y desempeño productivo de aves en postura. Acta Agronómica 55(3):47–54

    Google Scholar 

  • Rajendran PG, Ravindran CS, Nair SG, Nayar TVR (2000) True cassava seeds (TCS) for rapid spread of the crop in non-traditional areas. Central Tuber Crops Research Institute (Indian Council of Agricultural Research). Thiruvananthapuram, 695 017, Kerala, India

  • Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–619

    PubMed  CAS  Google Scholar 

  • Reddy BVS, Ramesh S, Ashok Kumar A, Wani SP, Ortiz R, Ceballos H, Sreedevi TK (2008) Bio-fuel crops research for energy security and rural development in developing countries. BioEnergy Res 1:248–258

    Google Scholar 

  • Reilly K, Bernal D, Cortes DF, Gomez-Vasquez R, Tohme J, Beeching JR (2007) Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol 64:187–203

    PubMed  CAS  Google Scholar 

  • Rickard JE (1985) Physiological deterioration of cassava roots. J Sci Food Agric 36:167–176

    Google Scholar 

  • Rolland-Sabaté A, Sánchez T, Buléon A, Colonna P, Jaillais B, Ceballos H, Dufour D (2012) Structural characterization of cassava, maize and potato starches with low and high amylose contents. Food Hydrocolloids 27:161–174

    Google Scholar 

  • Rosero-Alpala EA, Cuambe C, Egesi C, Sánchez T, Morante N, Ceballos H, Fregene M, Morales-Osorio JG (2010) Introgresión de la resistencia al deterioro fisiológico poscosecha en yuca. Acta Agronómica 59(2):180–187

    Google Scholar 

  • Sánchez T, Chávez AL, Ceballos H, Rodriguez-Amaya DB, Nestel P, Ishitani M (2005) Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. J Sci Food Agric 86(4):634–639

    Google Scholar 

  • Sánchez T, Mafla G, Morante N, Ceballos H, Dufour D, Calle F, Moreno X, Pérez JC, Debouck D (2009) Screening of starch quality traits in cassava (Manihot esculenta Crantz). Starch-Starke 61:12–19

    Google Scholar 

  • Sánchez T, Dufour D, Moreno IX, Ceballos H (2010) Pasting and gel stability of waxy and normal starches from cassava, potato, maize, and rice under thermal, chemical and mechanical stress. J Agric Food Chem 58:5093–5099

    PubMed  Google Scholar 

  • Sriroth K, Santisopasri V, Petchalanuwat C, Kurotjanawong K, Piyachomkwan K, Oates CG (1999) Cassava starch granule structure-function properties: influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydr Polym 38:161–170

    CAS  Google Scholar 

  • Taylor N, Chavarriaga P, Raemarkers K, Siritunga D, Zhang P (2004) Development and application of transgenic technologies in cassava. Plant Mol Biol 56:671–688

    PubMed  CAS  Google Scholar 

  • Tewe O (2004) Cassava for livestock feed in Sub-Saharan Africa. The Global Cassava Development Strategy. NeBambi L. (Coordinator). Food and Agriculture Organization of the United Nations (FAO), Rome, Italy

    Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput Tilling. Genome Res 13:524–530

    PubMed  CAS  Google Scholar 

  • Trivellini A, Ferrante A, Lucchesini M, Mensuali-Sodi A, Vernieri P, Tognoni F, Serra G (2007) Ethylene and abscisic acid interaction during hibiscus (Hibiscus rosa-sinensis L.) flower development and senescence. In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds.), Advances in Plant Ethylene Research. Proc. 7th Intl. Symp.Plant Hormone Ethylene.Springer, Dordrecht

  • Uritani I, Data ES, Tanaka Y (1984) Biochemistry of postharvest deterioration of cassava and sweet potato roots. In: Uritani I, Reyes ED (eds) Tropical root crops: postharvest physiology and processing. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • van Oirschot QEA, O’Brien GM, Dufour D, El-Sharkawy MA, Mesa E (2000) The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. J Sci Food Agric 80:1866–1873

    Google Scholar 

  • Wang C, Lentini Z, Tabares E, Quintero M, Ceballos H, Dedicova B, Sautter C, Olaya C, Peng Z (2011) Microsporogenesis and pollen formation in cassava (Manihot esculenta Crantz). Biol Plant 55(3):469–478

    Google Scholar 

  • Welsch R, Arango J, Bär C, Salazar B, Al-Babili S, Beltrán J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin A - accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. The Plant Cell 22:3348–3356

    PubMed  CAS  Google Scholar 

  • Westwood NN (1990) Maintenance and storage: clonal germplasm. Plant Breed Rev 7:111–128

    Google Scholar 

  • Wright CE (1965) Field plans for a systematically designed polycross. Rec Agr Res 14:31–41

    Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selections in plant breeding: from publications to practice. Crop Sci 48:391–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Ceballos.

Additional information

Communicated by: Nigel Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceballos, H., Kulakow, P. & Hershey, C. Cassava Breeding: Current Status, Bottlenecks and the Potential of Biotechnology Tools. Tropical Plant Biol. 5, 73–87 (2012). https://doi.org/10.1007/s12042-012-9094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-012-9094-9

Keywords

Navigation