Advertisement

Journal of Genetics

, Volume 97, Issue 5, pp 1339–1351 | Cite as

Genetic diversity and cultivar variants in the NCGR cranberry (Vaccinium macrocarpon Aiton) collection

  • B. Schlautman
  • G. Covarrubias-Pazaran
  • L. Rodriguez-Bonilla
  • K. Hummer
  • N. Bassil
  • T. Smith
  • J. ZalapaEmail author
Research Article
  • 78 Downloads

Abstract

The American cranberry (Vaccinium macrocarpon) is an endemic domesticated species that has become an economically important commercial fruit crop. The USDA-ARS National Clonal Germplasm Repository (NCGR) houses the national Vaccinium collection, which includes representatives of historical cranberry cultivars and wild-selected germplasm. The objective of this study was to examine the genotypes of 271 cranberry plants from 77 accessions representing 66 named cultivars using 12 simple-sequence repeats to assess clonal purity and cultivar relatedness. Using principal components analysis and neighbour-joining based on estimated genetic distances between individuals, we identified 64 unique genotypes and observed that intracultivar variants (i.e. subclones) existed in the germplasm collection and in the commercial bogs where some accessions originated. Finally, through a comparison of the genotypes of this study with the previous studies, pedigree analysis and the study of the geographic distribution of cranberry diversity, we identified consensus genotypes for many accessions and cultivars. We highlight the important role that the NCGR collection plays for ex situ conservation of cranberry germplasm for future breeders and researchers. The NCGR continues to search for historically relevant cultivars absent from the collection in an effort to preserve these genotypes before they are lost and no longer commercially grown.

Keywords

genetic resources ex situ conservation wild selections microsatellites simple sequence repeats consensus genotypes 

Notes

Acknowledgements

This project was supported by USDA-ARS (project no. 3655-21220-001-00 and 5090-21220-004-00 provided to JZ); WI-DATCP (SCBG Project no. 14-002); National Science Foundation (DBI-1228280); Ocean Spray Cranberries, Inc.; Wisconsin Cranberry Growers Association; Cranberry Institute. B.S. was supported by the Frank B. Koller Cranberry Fellowship for Graduate Students. LRB was supported through the UW Madison, SciMed GRS. GCP was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico). We thank Eric Weisman, Emily Gustin, Tiffany Bougie and Tierney Bougie for their help in the lab. JZ and BS wish to express their gratitude through PS:30:12. We thank all the anonymous reviewers who helped enhance the quality of this paper.

Supplementary material

12041_2018_1036_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (docx 26 KB)

References

  1. Bassil N. V., Oda A. K. and Hummer K. E. 2009 Blueberry microsatellite markers identify cranberry cultivars. Acta Hortic. 810, 181–186.CrossRefGoogle Scholar
  2. Brunet J., Zalapa J. and Guries R. 2016 Conservation of genetic diversity in Slippery elm (Ulmus rubra) in Wisconsin despite the devastating impact of Dutch elm disease. Conserv. Genet. 17, 1001–1010.CrossRefGoogle Scholar
  3. Camp W. 1945 The North American blueberries with notes on other groups of Vacciniaceae. Brittonia 5, 203–275.CrossRefGoogle Scholar
  4. Chandler F. and Demoranville I. 1958 Cranberry varieties of North America, 513th edition. Massachusetts Agricultural Experimental Station Bulletin.Google Scholar
  5. Dana M. 1983 Cranberry cultivar list. Fruit Var. J. 37, 88–95.Google Scholar
  6. Darrow G. and Camp W. 1945 Vaccinium hybrids and the development of new horticultural material. Bull. Torrey Bot. Club 72, 1–21.CrossRefGoogle Scholar
  7. Eck P. 1990 The American cranberry. Rutgers University Press, New Brunswick.Google Scholar
  8. Fajardo D., Morales J., Zhu H., Steffan S., Harbut R., Bassil N. et al. 2013 Discrimination of American cranberry cultivars and assessment of clonal heterogeneity using microsatellite markers. Plant Mol. Biol. Rep. 31, 264–271.CrossRefGoogle Scholar
  9. Jombart T. 2008 adegenet: a R package for the multivariate analysis of genetic markers. Bioinforma 24, 1403–1405.CrossRefGoogle Scholar
  10. Meilleur B. A. and Hodgkin T. 2004 In situ conservation of crop wild relatives: status and trends. Biodivers. Conserv. 13, 663–684.CrossRefGoogle Scholar
  11. Muzzalupo I., Vendramin G. G. and Chiappetta A. 2014 Genetic biodiversity of Italian olives (Olea europaea) germplasm analyzed by SSR markers. Sci. World J. 2014, article ID 296590.Google Scholar
  12. Novy R. and Vorsa N. 1995 Identification of intracultivar genetic heterogeneity in cranberry using silver-stained RAPDs. Hort. Sci. 30, 600–604.Google Scholar
  13. Novy R. G., Kokak C., Goffreda J. and Vorsa N. 1994 RAPDs identify varietal misclassification and regional divergence in cranberry [Vaccinium macrocarpon (Ait.) Pursh]. Theor. Appl. Genet. 88, 1004–1010.CrossRefGoogle Scholar
  14. Novy R. G., Vorsa N. and Patten K. 1996 Identifying genotypic heterogeneity in ‘McFarlin’ cranberry: a randomly-amplified polymorphic DNA (RAPD) and phenotypic analysis. J. Am. Soc. Hortic. Sci. 121, 210–215.Google Scholar
  15. Paradis E., Claude J. and Strimmer K. 2004 APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.CrossRefGoogle Scholar
  16. Pavek D. S., Lamboy W. F. and Garvey E. J. 2003 Selecting in situ conservation sites for grape genetic resources in the USA. Genet. Resour. Crop Evol. 50, 165–173.CrossRefGoogle Scholar
  17. Peakall R. and Smouse P. E. 2006 GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295.CrossRefGoogle Scholar
  18. Peltier G. 1970 A history of the cranberry industry in Wisconsin, Harlo Press, Detroit, Michigan.Google Scholar
  19. Polashock J. and Vorsa N. 2002 Development of SCAR markers for DNA fingerprinting and germplasm analysis of American cranberry. J. Am. Soc. Hortic. Sci. 127, 677–684.Google Scholar
  20. Rogers J. 1972 Measures of genetic similarity and genetic distance. In Studies in genetics VII, pp. 145–153. University of Texas, Publ. No. 7213.Google Scholar
  21. Schlautman B., Covarrubias-Pazaran G., Diaz-Garcia L. A., Johnson-Cicalese J., Iorrizo M., Rodriguez-Bonilla L. et al 2015a Development of a high-density cranberry SSR linkage map for comparative genetic analysis and trait detection. Mol. Breed. 35, 177.CrossRefGoogle Scholar
  22. Schlautman B., Fajardo D., Bougie T., Wiesman E., Polashock J., Vorsa N. et al 2015b Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarpon Ait.). Molecules 20, 2001–2013.CrossRefGoogle Scholar
  23. Schlautman B., Covarrubias-Pazaran G., Fajardo D., Steffan S. and Zalapa J. 2016 Discriminating power of microsatellites in cranberry organelles for taxonomic studies in Vaccinium and Ericaceae. Genet. Resour. Crop Evol. 64, 451–466.CrossRefGoogle Scholar
  24. Slate J., Marshall T. and Pemberton J. 2000 A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol. Ecol. 9, 801–808.CrossRefGoogle Scholar
  25. Teixeira H., Rodríguez-Echeverría S. and Nabais C. 2014 Genetic diversity and differentiation of Juniperus thurifera in Spain and Morocco as determined by SSR. PLoS One 9, e88996.CrossRefGoogle Scholar
  26. R Core Team 2015 R: A language and environment for statistical computing.Google Scholar
  27. Vander Kloet S. 1983a The taxonomy of Vaccinium section Oxycoccus. Rhodora 85, 1–43.Google Scholar
  28. Vander Kloet S. 1983b The taxonomy of Vaccinium section Cyanococcus: a summation. Can. J. Bot. 61, 256–266.CrossRefGoogle Scholar
  29. Zalapa J. E., Cuevas H., Steffan S., Zhu H., Senalik D., Zeldin E. et al 2012 Using next generation sequencing approaches for the isolation of simple sequence repeats (SSR) in the plant sciences. Am. J. Bot. 99, 193–208.CrossRefGoogle Scholar
  30. Zalapa J. E., Bougie T. C., Bougie T. A., Schlautman B. J., Wiesman E., Guzman A. et al 2015 Clonal diversity and genetic differentiation revealed by SSR markers in wild Vaccinium macrocarpon and Vaccinium oxycoccos. Ann. Appl. Biol. 166, 196–207.CrossRefGoogle Scholar
  31. Zhu H., Senalik D., McCown B. H., Zeldin E. L., Speers J., Hyman J. et al 2012 Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theor. Appl. Genet. 124, 87–96.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • B. Schlautman
    • 1
    • 2
  • G. Covarrubias-Pazaran
    • 2
  • L. Rodriguez-Bonilla
    • 2
  • K. Hummer
    • 3
  • N. Bassil
    • 3
  • T. Smith
    • 4
  • J. Zalapa
    • 2
    • 5
    Email author
  1. 1.The Land InstituteSalinaUSA
  2. 2.Department of HorticultureUniversity of WisconsinMadisonUSA
  3. 3.USDA-ARS National Clonal Germplasm RepositoryCorvallisUSA
  4. 4.Agriculture and Agri-Food CanadaOttawaCanada
  5. 5.USDA, Agricultural Research Service, Vegetable Crops Research UnitMadisonUSA

Personalised recommendations