Journal of Genetics

, Volume 97, Issue 5, pp 1407–1412 | Cite as

The genetic variants of solute carrier family 11 member 2 gene and risk of developing type-2 diabetes

  • Cansu Ozbayer
  • Hulyam KurtEmail author
  • Medine Nur Kebapci
  • Hasan Veysi Gunes
  • Ertugrul Colak
  • Irfan Degirmenci
Research Article


Type-2 diabetes (T2DM) is a metabolic disorder characterized by long-term insulin resistance, impaired insulin secretion from \({\upbeta }\)-cells, and loss of beta cell mass and function. Inflammation and oxidative stress play a key role in the development of diabetes and are associated with insulin resistance. Notably, recent studies have demonstrated an association between body iron stores, insulin resistance and T2DM. Free iron, a powerful pro-oxidant molecule, is involved in oxidative stress, lipid peroxidation and endothelial dysfunction via its ability to generate free radicals. Specifically, the accumulation of iron in beta cells triggers oxidative stress and DNA damage, which have been reported to be associated with \({\upbeta }\)-cell death and apoptosis. Solute carrier family-11 member-2 (SLC11A2) functions to transport ferrous iron and some divalent metal ions throughout the plasma membrane and across endosomal membranes. Functional polymorphisms in the SLC11A2 gene have been reported to cause excess storage of iron, resulting in iron overload. In this study, we evaluated the association between T2DM and SLC11A2 gene variants IVS4+44C/A, 1303C/A and 1254T/C by performing PCR-RFLP analysis on 100 T2DM patients and 100 healthy subjects. PCR products were digested with MnlI, MboI and SfanI restriction endonucleases and the products were then separated by 3% agarose gel electrophoresis. The genotype frequencies of the 1254T/C and 1303C/A SLC11A2 gene variants did not differ between healthy controls and T2DM patients (\(P > 0.05\)). But, in recessive model (\(P = 0.037\)) and homozygous CC genotype (\(P = 0.030\)) for IVS4+44C/A showed significant correlation with T2DM risk. It is thought that presence of C allele of IVS4+44C/A plays pathological roles.


type-2 diabetes IVS4+44C/A variant 1254T/C variant 1303C/A variant SLC11A2 gene 



We thank all consultants, staff and interviewees who participated in the study. No outside funding or grants received for this study.


  1. Cnop M., Welsh N., Jonas J.-C., Jörns A., Lenzen S. and Eizirik D. L. 2005 Mechanisms of pancreatic \(\upbeta \)-cell death in type 1 and type 2 diabetes many differences, few similarities. Diabetes 54, S97–S107.CrossRefGoogle Scholar
  2. Conrad M. E. and Umbreit J. N. 2000 Iron absorption and transport—an update. Am. J. Hematol. 64, 287–298.CrossRefPubMedCentralGoogle Scholar
  3. Donath M. Y. 2014 Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat. Rev. Drug Discov. 13, 465–476.CrossRefPubMedCentralGoogle Scholar
  4. Esser N., Legrand-Poels S., Piette J., Scheen A. J. and Paquot N. 2014 Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 105, 141–150.CrossRefPubMedCentralGoogle Scholar
  5. Fernández-Real J. M., López-Bermejo A. and Ricart W. 2002 Cross-talk between iron metabolism and diabetes. Diabetes 51, 2348–2354.CrossRefPubMedCentralGoogle Scholar
  6. Ganz T. 2003 Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102, 783–788.CrossRefPubMedCentralGoogle Scholar
  7. Guariguata L., Whiting D., Hambleton I., Beagley J., Linnenkamp U. and Shaw J. 2014 Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103, 137–149.CrossRefPubMedCentralGoogle Scholar
  8. Gurzau E. S., Neagu C. and Gurzau A. E. 2003 Essential metals—case study on iron. Ecotoxicol. Environ. Saf. 56, 190–200.CrossRefPubMedCentralGoogle Scholar
  9. Hansen J. B., Tonnesen M. F., Madsen A. N., Hagedorn P. H., Friberg J., Grunnet L. G. et al. 2012 Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic \(\upbeta \) cell fate in response to cytokines. Cell Metabol. 16, 449–461.CrossRefGoogle Scholar
  10. He Q., Du T., Yu X., Xie A., Song N., Kang Q. et al. 2011 DMT1 polymorphism and risk of Parkinson’s disease. Neurosci. Lett. 501, 128–131.CrossRefPubMedCentralGoogle Scholar
  11. Iolascon A., d’Apolito M., Servedio V., Cimmino F., Piga A. and Camaschella C. 2006 Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2). Blood 107, 349–354.CrossRefPubMedCentralGoogle Scholar
  12. Jiang R., Manson J. E., Meigs J. B., Ma J., Rifai N. and Hu F. B. 2004 Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 291, 711–717.CrossRefPubMedCentralGoogle Scholar
  13. Kayaalti Z., Odabaşi M. and Söylemezoğlu T. 2011 Genotype and allele frequencies of divalent metal transporter 1 polymorphism in Turkish population. Mol. Biol. Rep. 38, 2679–2684.CrossRefPubMedCentralGoogle Scholar
  14. Kayaaltı Z., Akyüzlü D. K. and Söylemezoğlu T. 2015 Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels. Environ. Res. 137, 8–13.CrossRefPubMedCentralGoogle Scholar
  15. Kelleher T., Ryan E., Barrett S., O’Keane C. and Crowe J. 2004 DMT1 genetic variability is not responsible for phenotype variability in hereditary hemochromatosis. Blood Cells Mol. Dis. 33, 35–39.CrossRefPubMedCentralGoogle Scholar
  16. Kim H.-K., Lee H. and Kim H.-J. 2013 A polymorphism in DMT1 is associated with lead-related hypertensive status. Mol. Cell. Toxicol. 9, 415–420.CrossRefGoogle Scholar
  17. Lee P. L., Gelbart T., West C., Halloran C. and Beutler E. 1998 The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol. Dis. 24, 199–215.CrossRefPubMedCentralGoogle Scholar
  18. Rajpathak S. N., Crandall J. P., Wylie-Rosett J., Kabat G. C., Rohan T. E. and Hu F. B. 2009 The role of iron in type 2 diabetes in humans. Biochim. Biophys. Acta 1790, 671–681.CrossRefPubMedCentralGoogle Scholar
  19. Ramm G. A. and Ruddell R. G. 2005 Hepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesis. Semin. Liver Dis. 25, 433–449.CrossRefPubMedCentralGoogle Scholar
  20. Saadat S. M., Değirmenci İ., Özkan S., Saydam F., Köroğlu Z. Ö., Çolak E. et al. 2015 Is the \(1254{\rm T} > \text{ C }\) polymorphism in the DMT1 gene associated with Parkinson’s disease? Neurosci. Lett. 594, 51–54.CrossRefGoogle Scholar
  21. Stokkers P. C., Huibregtse K., Leegwater A., Reitsma P. H., Tytgat G. N. and Van Deventer S. J. 2000 Analysis of a positional candidate gene for inflammatory bowel disease: NRAMP2. Inflamm. Bowel Dis. 6, 92–98.CrossRefPubMedCentralGoogle Scholar
  22. Zoller H., Weiss G., Theurl I., Koch R. O., Vogel W., Obrist P. et al. 2001 Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120, 1412–1419.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Cansu Ozbayer
    • 1
  • Hulyam Kurt
    • 2
    Email author
  • Medine Nur Kebapci
    • 3
  • Hasan Veysi Gunes
    • 2
  • Ertugrul Colak
    • 4
  • Irfan Degirmenci
    • 5
  1. 1.Faculty of Health SciencesKutahya Health Sciences UniversityKutahyaTurkey
  2. 2.Department of Medical BiologyEskisehir Osmangazi UniversityEskisehirTurkey
  3. 3.Department of EndocrinologyEskisehir Osmangazi UniversityEskisehirTurkey
  4. 4.Department of Biostatistics, Medical FacultyEskisehir Osmangazi UniversityEskisehirTurkey
  5. 5.Department of Medical BiologyMedical Faculty, Kutahya Health Sciences UniversityKutahyaTurkey

Personalised recommendations