Journal of Genetics

, Volume 97, Issue 5, pp 1213–1223 | Cite as

Impact of variants on type-2 diabetes risk genes identified through genomewide association studies in polycystic ovary syndrome: a case–control study

  • Intissar EzzidiEmail author
  • Nabil Mtiraoui
  • Mohammed Eltigani Mohmmed Ali
  • Aqeel Al Masoudi
  • Faisel Abu Duhier
Research Article


Polycystic ovary syndrome (PCOS) is a common endocrine disorder in females, and is associated with altered metabolic processes in particular insulin resistance and diabetes mellitus. PCOS shares with type-2 diabetes (T2D) a number of features, including beta cell dysfunction, impaired glucose tolerance and dyslipidaemia. Recently, genomewide association studies (GWAS) have reported a number of genes with reproducible associations and susceptibilities to T2D. To address this, we examined the association between the T2D GWAS candidate genes (CDKAL1, CDKN2B, COL8A1, HHEX, IGF2BP2, KCNJ1, KCNQ1 and SLC30A8) and PCOS in Saudi women. A case–control study, includes 162 cases and 162 controls was enrolled. Genotyping was carried out by the allelic discrimination method. Our results showed that the variants including rs792837 of COL8A1, rs61873498 of KCNQ1 and rs13266634 of SLC30A8 genes to be significantly more frequent in PCOS patients than in controls. Our results suggest that COL8A1, KCNQ1 and SLC30A8, which are previously identified through GWAS as T2D-associated genes, are associated with PCOS.


genome-wide association studies single-nucleotide polymorphisms polycystic ovary syndrome 



We gratefully acknowledge all of the patients and volunteers for their participation. We also thank the nurses and physicians for their contribution to the collection of all samples in King Salman Military Hospital of  Tabuk, Saudi Arabia. This work was supported in part by a grant from National Applied Research Program of King Abdul-Aziz City for Science and Technology, KSA (KACST: AC-34-156), and the Deanship of Scientific Research, University of Tabuk, KSA (DSR: S1436-0288). All funding sources were independent and had no influence on the study design, the data extraction, analyses, interpretation of the data, writing of this article, or in the decision to submit the article for publication.


  1. Alsibyani M., Derham A., Jazzar M., Alnefayi R. A. and Alnefaie A. S. 2017 Clinical presentation of polycystic ovary syndrome among Saudi Arabian women – Jeddah – Saudi Arabia. Int. J. Adv. Res.  5, 1872–1876.CrossRefGoogle Scholar
  2. Barber T. M., Bennett A. J., Gloyn A. L., Groves C. J., Sovio U., Ruokonen A. et al. 2007 Relationship between E23 K (an established type II diabetes-susceptibility variant within KCNJ11), polycystic ovary syndrome and androgen levels. Eur. J. Hum. Genet.  15, 679–684.CrossRefGoogle Scholar
  3. Bhattacharya S. M. 2008 Metabolic syndrome in females with polycystic ovary syndrome and International Diabetes Federation criteria. J. Obstet. Gynaecol. Res.  34, 62–66.PubMedGoogle Scholar
  4. Chen Z. J., Zhao H., He L., Shi Y., Qin Y., Shi Y. et al. 2011 Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet.  43, 55–59.CrossRefGoogle Scholar
  5. Cho Y. M., Kim T. H., Lim S., Choi S. H., Shin H. D., Lee H. K. et al. 2009 Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia  52, 253–261.CrossRefGoogle Scholar
  6. Diamanti-Kandarakis E., Piperi C., Spina J., Argyrakopoulou G., Papanastasiou L., Bergiele A. et al. 2006 Polycystic ovary syndrome: the influence of environmental and genetic factors. Hormones (Athens)  5, 17–34.CrossRefGoogle Scholar
  7. Ewens K. G., Jones M. R., Ankener W., Stewart D. R., Urbanek M., Dunaif A. et al. 2011 Type 2 diabetes susceptibility single-nucleotide polymorphisms are not associated with polycystic ovary syndrome. Fertil. Steril.  95, 2538–2541, e1–6.Google Scholar
  8. Frayling T. M. 2007 Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat. Rev. Genet.  8, 657–662.CrossRefGoogle Scholar
  9. Goodarzi M. O., Dumesic D. A., Chazenbalk G. and Azziz R. 2011 Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol.  7, 219–231.CrossRefGoogle Scholar
  10. Hughes C., Elgasim M., Layfield R. and Atiomo W. 2006 Genomic and post-genomic approaches to polycystic ovary syndrome – progress so far: mini review. Hum. Reprod.  21, 2766–2775.CrossRefGoogle Scholar
  11. Jalilian A., Kiani F., Sayehmiri F., Sayehmiri K., Khodaee Z. and Akbari M. 2015 Prevalence of polycystic ovary syndrome and its associated complications in Iranian women: a meta-analysis. Iran J. Reprod. Med.  13, 591–604.PubMedPubMedCentralGoogle Scholar
  12. Jones M. R. and Goodarzi M. O. 2016 Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil. Steril.  106, 25–32.CrossRefGoogle Scholar
  13. Kim J. J., Choi Y. M., Cho Y. M., Hong M. A., Chae S. J., Hwang K. R. et al. 2012 Polycystic ovary syndrome is not associated with polymorphisms of the TCF7L2, CDKAL1, HHEX, KCNJ11, FTO and SLC30A8 genes. Clin. Endocrinol. (Oxf)  77, 439–445.CrossRefGoogle Scholar
  14. Lee Y. H., Martin J. M., Maple R. L., Tharp W. G. and Pratley R. E. 2009 Plasma amyloid-beta peptide levels correlate with adipocyte amyloid precursor protein gene expression in obese individuals. Neuroendocrinology  90, 383–390.CrossRefGoogle Scholar
  15. Li L. and Baek K. H. 2015 Molecular genetics of polycystic ovary syndrome: an update. Curr. Mol. Med.  15, 331–342.CrossRefGoogle Scholar
  16. Li L., Zhao Y., Wang L., Yan J. and Chen Z. J. 2009 Genetic variations of solute carrier family 30 (zinc transporter) member 8 (SLC30A8) are not associated with polycystic ovary syndrome. Fertil. Steril.  91, 1598–1601.CrossRefGoogle Scholar
  17. Li T., Zhao H., Zhao X., Zhang B., Cui L., Shi Y. et al. 2012 Identification of YAP1 as a novel susceptibility gene for polycystic ovary syndrome. J. Med. Genet.  49, 254–257.CrossRefGoogle Scholar
  18. Liu X., Li L., Chen Z. J., Lu Z., Shi Y. and Zhao Y. 2010 Genetic variants of cyclin-dependent kinase 5 regulatory subunit associated protein 1-like 1 and transcription factor 7-like 2 are not associated with polycystic ovary syndrome in Chinese women. Gynecol. Endocrinol.  26, 129–134.CrossRefGoogle Scholar
  19. Liu H., Zhao H. and Chen Z. J. 2016 Genome-wide association studies for polycystic ovary syndrome. Semin. Reprod. Med.  34, 224–229.CrossRefGoogle Scholar
  20. Norman R. J., Dewailly D., Legro R. S. and Hickey T. E. 2007 Polycystic ovary syndrome. Lancet  370, 685–697.CrossRefGoogle Scholar
  21. Reddy B. M., Kommoju U. J., Dasgupta S. and Rayabarapu P. 2016 Association of type 2 diabetes mellitus genes in polycystic ovary syndrome aetiology among women from southern India. Indian J. Med. Res.  144, 400–408.CrossRefGoogle Scholar
  22. Rotterdam E. A.-S. P. C. W. G. 2004 Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril.  81, 19–25.Google Scholar
  23. Saxena R. and Welt C. K. 2013 Polycystic ovary syndrome is not associated with genetic variants that mark risk of type 2 diabetes. Acta Diabetol.  50, 451–457.CrossRefGoogle Scholar
  24. Saxena R., Voight B. F., Lyssenko V., Burtt N. P., de Bakker P. I., Chen H. et al. 2007 Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science  316, 1331–1336.CrossRefGoogle Scholar
  25. Scott L. J., Mohlke K. L., Bonnycastle L. L., Willer C. J., Li Y., Duren W. L. et al. 2007 A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science  316, 1341–1345.CrossRefGoogle Scholar
  26. Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D. et al. 2007 A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature  445, 881–885.CrossRefGoogle Scholar
  27. Steinthorsdottir V., Thorleifsson G., Reynisdottir I., Benediktsson R., Jonsdottir T., Walters G. B. et al. 2007 A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet.  39, 770–775.CrossRefGoogle Scholar
  28. Tehrani F. R., Zarkesh M., Tohidi M., Azizi F. and Zadeh-Vakili A. 2015 Is the association between insulin resistance and diabetogenic haematopoietically expressed homeobox (HHEX) polymorphism (rs1111875) affected by polycystic ovary syndrome status? Reprod. Fertil. Dev. 29, 670–678.CrossRefGoogle Scholar
  29. Trikudanathan S. 2015 Polycystic ovarian syndrome. Med. Clin. North Am.  99, 221–235.CrossRefGoogle Scholar
  30. Vermeulen A., Verdonck L. and Kaufman J. M. 1999 A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab.  84, 3666–3672.CrossRefGoogle Scholar
  31. Voight B. F., Scott L. J., Steinthorsdottir V., Morris A. P., Dina C., Welch R. P. et al. 2010 Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet.  42, 579–589.CrossRefGoogle Scholar
  32. Xiang J., Li X. Y., Xu M., Hong J., Huang Y., Tan J. R. et al. 2008 Zinc transporter-8 gene (SLC30A8) is associated with type 2 diabetes in Chinese. J. Clin. Endocrinol. Metab.  93, 4107–4112.CrossRefGoogle Scholar
  33. Zeggini E., Scott L. J., Saxena R., Voight B. F., Marchini J. L., Hu T. et al. 2008 Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet.  40, 638–645.CrossRefGoogle Scholar
  34. Zhao H., Lv Y., Li L. and Chen Z. J. 2016 Genetic studies on polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol.  37, 56–65.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Intissar Ezzidi
    • 1
    • 2
    Email author
  • Nabil Mtiraoui
    • 1
    • 2
  • Mohammed Eltigani Mohmmed Ali
    • 3
  • Aqeel Al Masoudi
    • 4
  • Faisel Abu Duhier
    • 1
  1. 1.Prince Fahd Bin Sultan Research Chair, Using Advance Technology for Diseases Detection and Treatment, Faculty of Applied Medical SciencesUniversity of TabukTabukSaudi Arabia
  2. 2.Laboratory of Human Genome and Multifactorial Diseases, LR12ES07, Faculty of Pharmacy of MonastirUniversity of MonastirMonastirTunisia
  3. 3.King Salman Military HospitalTabukSaudi Arabia
  4. 4.King Abdulaziz Airbase Armed Forces HospitalDhahranSaudi Arabia

Personalised recommendations