Journal of Genetics

, Volume 97, Issue 5, pp 1363–1369 | Cite as

Identification and characterization of microsatellite loci in West Atlantic sea cucumber Holothuria grisea (Selenka 1867)

  • Vanessa Alves PereiraEmail author
  • Jamille Martins Forte
  • José Pedro Vieira Arruda-Júnior
  • Fábio Mendonça Diniz
  • Rodrigo Maggioni
  • Carminda Sandra Brito Salmito-Vanderley
Research Article


The sea cucumber Holothuria grisea has become the subject of intense and unregulated fishing in northeastern Brazil due to their growing demand in Asian market. However, there is little knowledge about the dynamics and genetics of H. grisea wild populations on the South American coast. In this study, we present the first set of H. grisea microsatellite markers, identified and characterized using Illumina paired-end reads of whole genome shotgun sequencing. From 50 strictly selected candidates, eight novel microsatellite markers were successfully developed. We then genotyped 30 individuals to evaluate the degree of polymorphism and validate the markers. The number of alleles ranged from three to 14, while observed and expected heterozygotes ranged from 0.156 to 0.906 and from 0.283 to 0.774, respectively. After correcting for multiple tests, we found no evidence of linkage disequilibrium in all pairwise combinations between the loci. One locus (Hgr15607) revealed deviation from the Hardy–Weinberg equilibrium, as well as the presence of null alleles. However, we observed significant differences in frequency distribution between males and females at locus Hgr15607. We believe that the markers described here will be useful for conservation efforts and management of H. grisea fisheries and for prospective aquaculture of these organisms.


microsatellite next-generation sequencing genetic diversity sea cucumber Holothuria grisea 



We thank Cristália Produtos Químicos e Farmacêutios for their assistance in collecting H. grisea samples and partial funding. We kindly thank Ms Kellie Johns, from James Cook University, for English editing. All NGS were conducted at NPDM-UFC. All genotyping was conducted at CEDECAM-LABOMAR. R. Maggioni is a visiting scholar at James Cook University, Australia on a grant from CAPES (Proc. 88881.119752/2016-01).


  1. Bueno M. L., Tavares Y. A. T., Domenico M. D. and Borges M. 2015 Gametogenesis and weight change of body organs of the sea cucumber Holothuria (Halodeima) grisea Aspidochirotida: Holothuriidae) in Southern Brazil. Rev. Biol. Trop.  63, 285–296.Google Scholar
  2. Chang Y., Feng Z., Yu J. and Ding J. 2009 Genetic variability analysis in five populations of the sea cucumber Stichopus (Apostichopus) japonicus from China, Russia, South Korea and Japan as revealed by microsatellite markers. Mar. Ecol.  30, 455–461.CrossRefGoogle Scholar
  3. Chistiakov D. A., Hellemans B. and Volckaert F. A. M. 2006 Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture  255, 1–29. CrossRefGoogle Scholar
  4. Cockerham C. and Weir B. 1993 Estimation of gene flow from F-statistics. Evolution  47, 855–863.PubMedGoogle Scholar
  5. Dai G., Li Z. B., Shangguan J. B., Ning Y. F., Deng H. W., Yuan Y. et al. 2015 Development and characterization of polymorphic microsatellite loci in the sea cucumber Holothuria leucospilota. Genet. Mol. Res.  14, 538–541.CrossRefGoogle Scholar
  6. Dias I. F. 2012. Distribuição espaço temporal e densidade populacional de Holothuria (Halodeima) grisea (Holothuroidea: ASPIDOCHIRODITA) na praia de Bitupitá, Ceará, Nordeste do Brasil. 71 f. Dissertação (Curso de Pós-graduação em Engenharia de Pesca) - Universidade Federal do Ceará, FortalezaGoogle Scholar
  7. Diniz F. M., Iyengar A., Lima P. S. C., Maclean N. and Bentzen P. 2007 Application of a double-enrichment procedure for microsatellite isolation and the use of tailed primers for high throughput genotyping. Genet. Mol. Biol.  30, 380–384.CrossRefGoogle Scholar
  8. Fitch A. J., Leeworthy G., Li X., Bowman W., Turner L. and Gardner M. J. 2012 Isolation and characterisation of eighteen microsatellite markers from the sea cucumber Holothuria scabra (Echinodermata: Holothuriidae). Aust. J. Zool.  60, 368–371.CrossRefGoogle Scholar
  9. Frank M. Y., Naxin H., Yong Q. G., Ming-Cheng L., Yaqin M., Dave H. et al. 2008 BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9, 253.CrossRefGoogle Scholar
  10. Henriques F. F., Ester A. and Serrão G-W. M. 2016 Novel polymorphic microsatellite loci for a new target species, the sea cucumber Holothuria mammata. Biochem. Syst. Ecol.  66, 109–113.CrossRefGoogle Scholar
  11. Kang J. H., Kim Y. K., Kim M. J., Park J. Y., An C. M., Kim B. S. et al. 2011 Genetic differentiation among populations and color variants of sea cucumbers (Stichopus Japonicus) from Korea and China. Int. J. Biol. Sci.  7, 323–332.CrossRefGoogle Scholar
  12. Kanno M., Li Q. and Kijima A. 2005 Isolation and characterization of twenty microsatellite loci in Japanese sea cucumber (Stichopus japonicus). Mar. Biotechnol.  7, 179–183.CrossRefGoogle Scholar
  13. Kanno M., Suyama Y., Li Q. and Kijima A. 2006 Microsatellite analysis of Japanese sea cucumber, (Stichopus Apostichopus) japonicus, supports reproductive isolation in color variants. Mar. Biotechnol.  8, 672–685.CrossRefGoogle Scholar
  14. Leite-Castro L. V., Junior J. S., Salmito Vanderley C. S. B., Nunes J. F., Hamel J. F. and Mercier A. 2016 Reproductive biology of the sea cucumber Holothuria grisea in Brazil: importance of social and environmental factors in breeding coordination. Mar. Biol.  67, 1–13.Google Scholar
  15. Li Z. B., Dai G., Shangguan J. B., Ning Y. F., Li Y. Y., Chen R. B. et al. 2015 Isolation and characterization of polymorphic microsatellite loci in the sea cucumber Holothuria scabra. Genet. Mol. Res.  14, 6529–6532.CrossRefGoogle Scholar
  16. Liao M., Wang Y., Rong X., Zhang Z., Li B., Wang L. et al. 2011 Development of new microsatellite DNA markers from Apostichopus japonicus and their cross-species application in Parastichopus parvimensis and Pathallus mollis. Int. J. Mol. Sci.  12, 5862–5870.Google Scholar
  17. Mardis E. R. 2008 Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet.  9, 387–402.CrossRefGoogle Scholar
  18. Martins W. S., Lucas D. C. S., Neves K. F. S. and Bertioli D. J. 2009 WebSat: a web software for microsatellite marker development. Bioinformation  3, 282–283.CrossRefGoogle Scholar
  19. Melo A. A., Carneiro F. R., Silva W. M., Moura R. M., Silva G. C., Sousa O. V. et al. 2014 HGA-2, a novel galactoside-binding lectin from the sea cucumber Holothuria grisea binds to bacterial cells. Int. J. Biol. Macromol. 64, 435–442.CrossRefGoogle Scholar
  20. Mendes F. M., Marenzi A. W. C. and Domenico M. D. 2006 Population patterns and seasonal observations on density and distribution of Holothuria grisea (Holothuroidea: Aspidochirotida) on the Santa Catarina Coast, Brazil. SPC Beche-de-mer Info Bull.  23, 5–10.Google Scholar
  21. Miller M. P., Knaus B. J., Mullins T. D. and Haig S. M. 2013 SSR\_pipeline – Computer software for the identification of microsatellite sequences from paired-end Illumina High-Throughput DNA sequence data (ver. 1.1, February 2014): U.S. Geological Survey, 778.Google Scholar
  22. Morozova O. and Marra M. A. 2008 Applications of next-generation sequencing technologies in functional genomics. Genomics  92, 255–264.CrossRefGoogle Scholar
  23. Moura R. M., Aragão K, Melo A. A., Carneiro R. F., Osório C. B. H., Luz P. B. et al. 2013 Holothuria grisea agglutinin (HGA): the first invertebrate lectin with anti-inflammatory effects. Fundam. Clin. Pharmacol.  27, 656–668.CrossRefGoogle Scholar
  24. Mourão P. A. S. 2004 Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr. Pharm. Des.  10, 967–981.CrossRefGoogle Scholar
  25. Peakall R. and Smouse P. E. 2006 GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes  6, 288–295.CrossRefGoogle Scholar
  26. Peng W., Bao Z., Du H., Dong Y., Lv Y., Zhou Z. et al. 2009 Development and characterization of 38 novel EST-SSRs for the sea cucumber Apostichopus japonicus. Conserv. Genet. Resour.  1, 447–450.CrossRefGoogle Scholar
  27. Peng W., Bao Z. M., Du H. X., Yan J. J., Zhang L. L. and Hu J. J. 2012 Development and characterization of 70 novel microsatellite markers for the sea cucumber (Apostichopus japonicus). Genet. Mol. Res.  11, 434–439.CrossRefGoogle Scholar
  28. Purcell S. W., Conand C., Uthicke S. and Byrne M. 2016 Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol.  54, 367–386.Google Scholar
  29. Raymond M. and Rousset F. 1995 GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Heredity  86, 248–249.CrossRefGoogle Scholar
  30. Rice W. 1989 Analyzing tables of statistical tests. Evolutionary 43, 223–225.Google Scholar
  31. Robinson G. and Lovatelli A. 2015 Global sea cucumber fisheries and aquaculture FAO’s inputs over the past few years. FAO Aquacult. Newsl.  53, 55–57.Google Scholar
  32. Schmieder R. and Edwards R. 2011 Quality control and preprocessing of metagenomic datasets. Bioinformatics  27, 863–864. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schuelke M. 2000 An economic method for the fluorescent labeling of PCR fragments. A poor man’s approach to genotyping for research and high-throughput diagnostics. Nat. Biotechnol.  18, 1–2.CrossRefGoogle Scholar
  34. Shangguan J. B., Li Z. B., Ning Y. F., Huang Y. S., Yuan Y., Lu J. et al. 2015 Screening and characterization of novel polymorphic microsatellite markers from sea cucumber Holothuria leucospilota. Genet. Mol. Res.  14, 6555–6560.CrossRefGoogle Scholar
  35. Sun G. Q., Li L., Yi Y. H., Yuana W. H., Liua B. S., Wenga Y. Y. et al. 2008 Two new cytotoxic nonsulfated pentasaccharide holostane (=20-hydroxylanostan-18-oic acid g-lactone) glycosides from the sea cucumber Holothuria grisea. Helv. Chim. Acta 91, 1453–1460.CrossRefGoogle Scholar
  36. Tommasi L. R. 1969 Lista dos holothuroidea recentes do Brasil. Contribuições Avulsas do Instituto Oceanográfico. Universidade de São Paulo, Sér. Oceanogr. Biol.  15, 1–29.Google Scholar
  37. Uthicke S. and Conand C. 2005 Local examples of beche-de-mer overfishing an initial summary and request for information. SPC Beche-de-mer. Info Bull.  21, 9–14.Google Scholar
  38. van Oosterhout C., Hutchinson W. F., Wills D. P. and Shipley P. 2004 MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Resour.  4, 535–538.CrossRefGoogle Scholar
  39. Yang T., Bao S. Y., Ford R., Jia T. J., Guan J. P., He Y. H. et al. 2012 High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics  13, 1–11.CrossRefGoogle Scholar
  40. Zane L., Bargelloni L. and Patarnello T. 2002 Strategies for microsatellite isolation: a review. Mol. Ecol.  11, 1–16.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Vanessa Alves Pereira
    • 1
    Email author
  • Jamille Martins Forte
    • 2
  • José Pedro Vieira Arruda-Júnior
    • 3
  • Fábio Mendonça Diniz
    • 4
  • Rodrigo Maggioni
    • 2
  • Carminda Sandra Brito Salmito-Vanderley
    • 1
  1. 1.Faculdade de VeterináriaUniversidade Estadual do CearáFortalezaBrazil
  2. 2.Instituto de Ciências do Mar (LABOMAR)Universidade Federal do CearáFortalezaBrazil
  3. 3.Centro de CiênciasUniversidade Federal do CearáFortalezaBrazil
  4. 4.EMBRAPA Caprinos e OvinosSobralBrazil

Personalised recommendations