Advertisement

Journal of Genetics

, Volume 97, Issue 5, pp 1241–1251 | Cite as

Molecular breeding of ameliorating commercial pearl millet hybrid for downy mildew resistance

  • Jyoti Taunk
  • Asha Rani
  • Neelam R. YadavEmail author
  • Dev Vart Yadav
  • Ram C. Yadav
  • Kushal Raj
  • Ramesh Kumar
  • H. P. Yadav
Research Article
  • 42 Downloads

Abstract

Downy mildew (DM) caused by Sclerospora graminicola is the most calamitous disease of pearl millet. Therefore, for introgression of DM resistance (DMR) in HHB 197 (MH-1302), an elite pearl millet hybrid, a marker-assisted breeding was undertaken by targeting three DMR loci on linkage groups (LGs) 1, 2 and 4. Breeding programme was initiated by crossing HBL 11 (DM susceptible), male parent of HHB 197 hybrid with ICMP 451 (DM-resistant) to produce true \(\hbox {F}_{1}\) plants. By conducting three rounds of backcrossing and selection, \(\hbox {BC}_{3}\hbox {F}_{1}\) lines were generated. Foreground selection was employed using six polymorphic simple sequence repeat (SSR) markers of the 18 total selected markers. Four of these markers were linked to LG 1, five to LG 2 and nine to LG 4. Background selection was performed in \(\hbox {BC}_{3}\hbox {F}_{1}\) generation using 33 polymorphic SSR markers of a total of 56 evenly spread SSR markers in the pearl millet genome to check recovery of recurrent parent genome. On the basis of genotypic selection (foreground as well as background) using selected SSR markers, agronomic performance in field and DM screening in greenhouse; 10 improved HBL 11 lines were selected and crossed with ICMA 97111 to produce DM-resistant HHB 197 hybrid versions. Six putatively improved HHB 197 hybrids were successfully tested in first year trials at Hisar and Bawal locations of Haryana and two selected versions with higher yield and zero DM incidence will be further tested in multilocation trials.

Keywords

downy mildew HHB 197 hybrid marker-assisted selection pearl millet simple sequence repeat 

Notes

Acknowledgements

The authors are thankful to Head, Department of Molecular Biology, Biotechnology and Bioinformatics and Head, Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University for providing all the research facilities. The authors wish to acknowledge University Grants Commission (UGC), New Delhi, India for providing a Junior Research Fellowship (JRF) to the first author. Dr Poonam Mor, Assistant Professor, Department of Languages and Haryanvi Culture, CCS Haryana Agricultural University is gratefully acknowledged for language review of the manuscript.

Supplementary material

12041_2018_1016_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (docx 25 KB)

References

  1. Angarawai I. I., Kadams A. M., Bello D. and Mohammed S. G. 2008 Quantitative nature of downy mildew resistance in Nigerian elite pearl millet lines. J. SAT. Agric. Res. 6, 1–3.Google Scholar
  2. Berloo R. V. 1999 GGT: software for the display of graphical genotypes. J. Hered. 90, 328–329.CrossRefGoogle Scholar
  3. Breese W. A., Hash C. T., Devos K. M. and Howarth C. J. 2002 Pearl millet genomics: an overview with respect to breeding for resistance to downy mildew. In Sorghum and Millets Pathology (ed. J. F. Leslie), pp. 243–246. Iowa State Press, Ames, Iowa, USA.Google Scholar
  4. Butler E. J. 1907 Some diseases of cereals caused by Sclerospora graminicola. Memories of the Department of Agriculture in India, Botanical Series, Thacker, Spink, Calcutta, India 2, 1–24.Google Scholar
  5. Dass S., Kapoor R. L., Paroda R. S. and Jatasra D. S. 1984 Gene effects for downy mildew (Sclerospora graminicola) resistance in pearl millet. Indian J. Genet. Plant Breed. 44, 280–285.Google Scholar
  6. Deswal D. P. and Govila O. P. 1994 Genetics of resistance to downy mildew (Sclerospora graminicola) in pearl millet (Pennisetum glaucum). Indian J. Agric. Sci. 64, 661–663.Google Scholar
  7. Devos K. M., Pittaway T. S., Reynolds A. and Gale M. D. 2000 Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor. Appl. Genet. 100, 190–198.CrossRefGoogle Scholar
  8. Doyle J. J. and Doyle J. L. 1990 Isolation of plant DNA from fresh tissue. Focus 12, 13–15.Google Scholar
  9. Farokhzadeh S. and Fakheri B. A. 2014 Marker-assisted selection for disease resistance: applications in breeding. Int. J. Agric. Crop Sci. 7, 1392–1405.Google Scholar
  10. Gazal A., Dar Z. A., Wani S. H., Lone A. A., Shikari A. B., Ali G. et al. 2016 Molecular breeding for enhancing resilience against biotic and abiotic stress in major cereals. SABRAO J. Breed. Genet. 48, 1–32.Google Scholar
  11. Gulia S. K. 2004 QTL mapping for improvement of downy mildew [Sclerospora graminicola (Sacc.) j. Schroet.] resistance (DMR) in pearl millet (Pennisetum glaucum (L.) R. Br.) hybrid parental line ICMB 89111. PhD thesis, CCS Haryana Agricultural University.Google Scholar
  12. Gulia S. K., Hash C. T., Thakur R. P., Breese W. A. and Sangwan R. S. 2007 Mapping new QTLs for downy mildew [Sclerospora graminicola (Sacc.) J. Schroet.] resistance in pearl millet (Pennisetum glaucum (L.) R. Br.). In Crop production in stress environments—Genetic and management options (ed. D. S. Singh, V. S. Tomar, R. K. Behl, S. D. Upadhyaya, M. S. Bhale, D. Khare), pp. 373–386. Agrobios, Jodhpur.Google Scholar
  13. Gupta G. K. 2001 Efficacy of metalaxyl formulations in controlling downy mildew of pearl millet and their residues under arid climate. Indian Phytopathol. 54, 210–214.Google Scholar
  14. Gupta P. C., Agarwal V. P., Narayan S., Gupta N. K. and Singh G. 2015 Studies on genetic associations, variability and diversity in pearl millet (Pennisetum glaucum (L.) R. Br.). Indian Res. J. Genet. Biotechnol. 7, 405–414.Google Scholar
  15. Hash C. T. 2004 Contiguous segment substitution lines: new tool for elite pearl millet hybrid parental lines enhancement. DFID Plant Sciences Research Programme (http://www.dfid-psp.org/projects/7382).
  16. Hash C. T., Sharma A., Kolesnikova-Allen M. A., Singh S. D., Thakur R. P., Bhasker Raj A. G. et al. 2006 Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: pearl millet hybrid ‘HHB 67 Improved’ enters seed delivery pipeline. SAT eJ. 2, (http://dmd.dacnet.nic.in/10year_pearl.htm).
  17. Jones E. S. 1994 Mapping quantitative trait loci for resistance to downy mildew in pearl millet. PhD Thesis, University of Wales, Bangor.Google Scholar
  18. Jones E. S., Liu C. J., Gale M. D., Hash C. T. and Witcombe J. R. 1995 Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor. Appl. Genet. 91, 448–456.CrossRefGoogle Scholar
  19. Jones E. S., Breese W. A., Liu C. J., Singh S. D., Shaw D. S. and Witcombe J. R. 2002 Mapping quantitative trait loci for resistance to downy mildew in pearl millet: filed and greenhouse screens detect the same QTL. Crop Sci. 42, 1316–1323.CrossRefGoogle Scholar
  20. Kataria R. P., Yadav H. P., Beniwal C. R. and Namal M. S. 1994 Genetics of incidence of downy mildew (Sclerospora graminicola) in pearl millet (Pennisetum glaucum). Indian J. Agric. Sci. 64, 664–666.Google Scholar
  21. Kumar A., Kumar R., Yadav V. P. S. and Kumar R. 2010 Impact assessment of frontline demonstrations of Bajra in Haryana state. Indian Res. J. Ext. Educat. 10, 105–108.Google Scholar
  22. Liu C. J., Witcombe J. R., Pittaway T. S., Nash M., Hash C. T., Busso C. G. et al. 1994 A RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor. Appl. Genet. 89, 481–487.Google Scholar
  23. Phunc N. V., Lang N. T. and Buu B. C. 2005 STS and microsatellite marker assisted selection for bacterial blight resistance in rice. Oryza sativa L. Omonrice 13, 18–22.Google Scholar
  24. Pushpavathi B. 2006 Fertility and mating type frequency in Indian isolates of Sclerospora graminicola, the downy mildew pathogen of pearl millet. Plant Dis. 90, 211–214.Google Scholar
  25. Qi X., Pittaway T. S., Lindup S., Liu H., Waterman E., Padi F. K. et al. 2004 An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor. Appl. Genet. 109, 1485–1493.Google Scholar
  26. Ragimekula N., Varadarajula N. N., Mallapuram S. P., Gangimeni G., Reddy R. K. and Kondreddy H. R. 2013 Marker assisted selection in disease resistance breeding. J. Plant Breed. Genet. 1, 90–109.Google Scholar
  27. Rajaram V., Nepolean T., Senthilvel S., Varshney R. K., Vadez V., Srivastava R. K. et al. 2013 Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14, 159.Google Scholar
  28. Shinde R. B., Patil F. B. and Sangave R. A. 1984 Resistance to downy mildew in pearl millet. J. Maharashtra Agric. Univ. 9, 337–338.Google Scholar
  29. Singh S. D., Wilson J. P., Navi S. S., Talukdar B. S., Hess D. E. and Reddy K. N. 1997 Screening techniques and sources of resistance to downy mildew and rust in pearl millet. ICRISAT Information Bulletin no. 48 (https://www.cabdirect.org/cabdirect/abstract/19971006350).
  30. Singh S., Yadav Y. P., Yadav H. P., Vart D. and Yadav N. 2016 Morphological characterization of pearl millet hybrids (Pennisetum glaucum (L.) R. Br.) and their parents. Afr. J. Agri. Res. 11, 371–378.CrossRefGoogle Scholar
  31. Supriya A., Senthilvel S., Nepolean T., Eshwar K., Rajaram V., Shaw R. et al. 2011 Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor. Appl. Genet. 123, 239–250.CrossRefGoogle Scholar
  32. Taunk J., Sehgal D., Yadav N. R., Howarth C., Yadav R. C. and Yadav R. S. 2017 Mapping of easy to screen SSR markers for selection of RFLP markers-bracketed downy mildew resistance QTLs in pearl millet. Eur. J. Plant Pathol. (https://doi.org/10.1007/s10658-017-1381-8).
  33. Thakur R. P., Rai K. N., Khairwal I. S. and Mahala R. S. 2008 Strategy for downy mildew resistance breeding in pearl millet in India. J. SAT Agric. Res. 6.Google Scholar
  34. Toojinda T., Baird E., Booth A., Broers L., Hayes P., Powell W. et al. 1998 Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor. Appl. Genet. 96, 123–131.CrossRefGoogle Scholar
  35. Wang D., Shi J., Carlson S. R., Cregan P. B., Ward R. W. and Diers B. W. 2003 A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Sci. 43, 1828–1832.CrossRefGoogle Scholar
  36. Yadav A. K., Kumar A., Singh J., Jat R. D., Jat H. S., Datta A. et al. 2014 Performance of pearl millet genotypes under irrigated and rainfed conditions at Hisar, India. J. Appl. Nat. Sci. 6, 377–382.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Jyoti Taunk
    • 1
  • Asha Rani
    • 1
  • Neelam R. Yadav
    • 1
    Email author
  • Dev Vart Yadav
    • 2
  • Ram C. Yadav
    • 1
  • Kushal Raj
    • 3
  • Ramesh Kumar
    • 2
  • H. P. Yadav
    • 2
  1. 1.Department of Molecular Biology, Biotechnology and BioinformaticsChaudhary Charan Singh Haryana Agricultural UniversityHisarIndia
  2. 2.Department of Genetics and Plant BreedingChaudhary Charan Singh Haryana Agricultural UniversityHisarIndia
  3. 3.Department of Plant PathologyChaudhary Charan Singh Haryana Agricultural UniversityHisarIndia

Personalised recommendations