Advertisement

Journal of Genetics

, Volume 97, Issue 5, pp 1179–1183 | Cite as

Isolation and characterization of microsatellite marker loci in the Wagner’s mustached bat Pteronotus psilotis (Chiroptera: Mormoopidae) and cross-amplification in other related species

  • A. Méndez-Rodríguez
  • R. López-WilchisEmail author
  • A. Serrato Díaz
  • J. Juste
  • M. A. Del Río-Portilla
  • L. M. Guevara-ChumaceroEmail author
Research Article

Abstract

Pteronotus psilotis, a mormoopid bat, is an insectivorous, gregarious and strict cave-dwelling species that is found areas between the sea level and an elevation of about 1000 masl. This species is present in diverse habitats ranging from rain forest to dry deciduous forest. Nine microsatellite loci were developed for Wagner’s mustached bat, Pteronotus psilotis using the next-generation sequencing approach, and their utility for population genetics studies was assessed. All loci were polymorphic (7–15 alleles) and characterized in 30 individuals from three P. psilotis populations, with the levels of observed and expected heterozygosity ranging from 0.280 to 0.867 and 0.584 to 0.842, respectively. One locus showed significant departures from Hardy–Weinberg expectations after Bonferroni correction. Cross-amplification in 11 other bat species was tested, for which eight microsatellites were successfully amplified, and of these seven were polymorphic. The development of these new microsatellite loci will contribute to investigations of genetic population structure, genetic diversity and gene flow in P. psilotis populations, as well as in other closely related bat species.

Keywords

microsatellites cross-amplification polymorphism Mormoopidae Pteronotus psilotis 

Notes

Acknowledgements

This work was developed in the Divisional Laboratory of Molecular Biology at the Universidad Autónoma Metropolitana-Iztapalapa and was financially supported by CONACYT fellowships to RLW (CB-2009-01/128459) and LMGCH (CB-2014-01/243138).

References

  1. Aljanabi S. M. and Martinez I. 1997 Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693.CrossRefGoogle Scholar
  2. Bardeleben C., Campbell P., Lara M. and Moore R. L. 2007 Isolation of polymorphic tetranucleotide microsatellite markers for the silky short-tailed bat Carollia brevicauda. Mol. Ecol. Notes 7, 63–65.CrossRefGoogle Scholar
  3. Castoe T. A., Poole A. W., de Koning A. P. J., Jones K. L., Tomback D. F., Oyler-McCance S. J. et al. 2012 Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS One 7, e30953.CrossRefGoogle Scholar
  4. Dávalos L. M. 2006 The geography of diversification in the mormoopids (Chiroptera: Mormoopidae). Biol. J. Linn. Soc. 88, 101–118.CrossRefGoogle Scholar
  5. Dávalos L., Molinari J., Mantilla H., Medina C., Pineda J. and Rodríguez B. 2008 Pteronotus personatus. The IUCN Red List of Threatened Species. Accessed 8 Dec 2016 (www.iucnredlist.org).
  6. De la Torre J. A. and Medellín R. A. 2010 Pteronotus personatus (Chiroptera: Mormoopidae). Mamm. Species 42, 244–250.CrossRefGoogle Scholar
  7. Excoffier L., Laval G. and Schneider S. 2005 Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinf. Online 1, 47–50.CrossRefGoogle Scholar
  8. Faircloth B. C. and Glenn T. C. 2012 Not all sequence tags are created equal: designing and validating sequence identification tags robust to indels. PLoS One 7, e42543.CrossRefGoogle Scholar
  9. Findley J. S. 1993 Bats: a community perspective. Cambridge University Press, New York.Google Scholar
  10. Fisher S., Barry A., Abreu J., Minie B., Nolan J., Delorey T. M. et al. 2011 A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 12, R1.CrossRefGoogle Scholar
  11. Méndez-Rodríguez A., López-Wilchis R., Serrato-Díaz A., Del Río-Portilla M. A. and Guevara-Chumacero L. M. 2015 Isolation and characterization of microsatellite markers for funnel-eared bats Natalus mexicanus (Chiroptera: Natalidae) and cross-amplification using next-generation sequencing. Biochem. Syst. Ecol. 62, 69–72.CrossRefGoogle Scholar
  12. Ortega J., Maldonado J. E., Arita H. T., Wilkinson G. S. and Fleischer G. S. 2002 Characterization of microsatellite loci in the Jamaican fruit-eating bat Artibeus jamaicensis and cross-species amplification. Mol. Ecol. Notes 2, 462–464.CrossRefGoogle Scholar
  13. Pavan A. C. and Marroig G. 2016 Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Mol. Phylogenet. Evol. 103, 184–198.CrossRefGoogle Scholar
  14. Pavan A. C. and Marroig G. 2017 Timing and patterns of diversification in the Neotropical bat genus Pteronotus (Mormoopidae). Mol. Phylogenet. Evol. 108, 61–69.CrossRefGoogle Scholar
  15. Peakall R. and Smouse P. E. 2012 GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539.CrossRefGoogle Scholar
  16. Piaggio A. J., Figuero J. A. and Perkins S. L. 2009 Development and characterization of 15 polymorphic microsatellite loci isolated from Rafinesque’s big-eared bat, Corynorhinus rafinesquii. Mol. Ecol. Resour. 9, 1191–1193.CrossRefGoogle Scholar
  17. Ramírez J., Munguía-Vega A. and Culver M. 2011 Isolation of microsatellite loci from the lesser long-nosed bat (Leptonycteris yerbabuenae). Conserv. Genet. Resour. 86, 248–249.Google Scholar
  18. Raymond M. and Rousset F. 1995 GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249.CrossRefGoogle Scholar
  19. Rice W. R. 1989 Analyzing tables of statistical tests. Evolution 43, 223–225.CrossRefGoogle Scholar
  20. Romero-Meza J. A., Lance S. L. and Ortega J. 2012 A new set of microsatellite loci for Leptonycteris yerbabuenae and cross species amplification with other glossophagines. Conserv. Genet. Resour. 4, 291–294.CrossRefGoogle Scholar
  21. Sikes R. S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688.CrossRefGoogle Scholar
  22. Simmons N. B. and Conway T. M. 2001 Phylogenetic relationships of mormoopid bats (Chiroptera: Mormoopidae) based on morphological data. Bull. Am. Mus. Nat. Hist. 258, 1–100.CrossRefGoogle Scholar
  23. Smith J. D. 1972 Systematics of the Chiropteran family Mormoopidae. Misc. Publ. Mus. Nat. Hist. Univ. Kansas 56, 1–132.Google Scholar
  24. Van Oosterhout C., Hutchinson W. F., Wills D. P. M. and Shipley P. 2004 MICRO-CHECKER: software for identifying and correcting and genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538.CrossRefGoogle Scholar
  25. Wagner J. A. 1843 Diagnosen neuer Arten brasilischer Handflungler. Arch. Naturgesch. 9, 365–368.Google Scholar
  26. Zárate-Martínez, D. G., López-Wilchis R., Ruiz-Ortíz J. D., Barriga-Sosa I. D. L. A., Serrato Díaz A., Ibáñez C. et al. 2018 Intraspecific evolutionary relationships and diversification patterns of the Wagner’s mustached bat, Pteronotus personatus (Chiroptera: Mormoopidae). Acta Chiropt. 20, 51–58.Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • A. Méndez-Rodríguez
    • 1
  • R. López-Wilchis
    • 1
    Email author
  • A. Serrato Díaz
    • 2
  • J. Juste
    • 3
    • 4
  • M. A. Del Río-Portilla
    • 5
  • L. M. Guevara-Chumacero
    • 1
    Email author
  1. 1.Departamento de BiologíaUniversidad Autónoma Metropolitana IztapalapaCiudad de MéxicoMexico
  2. 2.Departamento de HidrobiologíaUniversidad Autónoma Metropolitana IztapalapaCiudad de MéxicoMexico
  3. 3.Estación Biológica de Doñana, C.S.I.C.SevillaSpain
  4. 4.CIBER de Epidemiología y Salud Pública, CIBERESPMadridSpain
  5. 5.Departamento de AcuiculturaCentro de Investigación Científica y de Educación Superior de Ensenada, B.C.EnsenadaMexico

Personalised recommendations