Advertisement

Journal of Genetics

, Volume 97, Issue 5, pp 1107–1117 | Cite as

MiR-27b promotes sheep skeletal muscle satellite cell proliferation by targeting myostatin gene

  • Wei Zhang
  • Shi-Yin WangEmail author
  • Shuang-Yi Deng
  • Li Gao
  • Li-Wei Yang
  • Xiao-Na Liu
  • Guo-Qing Shi
Research Article
  • 74 Downloads

Abstract

To investigate the role of miR-27b in sheep skeletal muscle development, here we first cloned the sequence of sheep pre-miR-27b, then further investigated its expression pattern in sheep skeletal muscle in vivo, the relationship of miR-27b expression and sheep skeletal muscle satellite cell proliferation and differentiation in vitro, and then finally confirmed its target gene during this development process. MiR-27b sequence, especially its mature sequence, was conservative among different species. MiR-27b highly expressed in sheep skeletal muscle than other tissues. In skeletal muscle of Suffolk and Bashbay sheep, miR-27b was upregulated during foetal period and downregulated during postnatal period significantly (\(P{<}0.01\)), but it still kept a relatively higher expression level in skeletal muscle of postnatal Suffolk sheep than Bashbay. There is a potential target site of miR-27b on \(3^\prime \)-UTR of sheep myostatin (MSTN) mRNA, and the double luciferase reporter assay proved that miR-27b could successfully bind on this site. When sheep satellite cells were in the proliferation status, miR-27b was upregulated and MSTN was downregulated significantly (\(P{<}0.01\)). When miR-27b mimics was transfected into sheep satellite cells, the cell proliferation was promoted and the protein level of MSTN was significantly downregulated (\(P{<}0.01\)). Moreover, miR-27b regulated its target gene MSTN by translation repression at an early step, and followed by inducing mRNA degradation in sheep satellite cells. Based on these results, we confirm that miR-27b could promote sheep skeletal muscle satellite cell proliferation by targeting MSTN and suppressing its expression.

Keywords

miR-27b myostatin gene sheep skeletal muscle satellite cell 

Notes

Acknowledgements

This study was funded by the Scientific Research Program of the Higher Education Institution of XinJiang (XJEDU2016I062) and the Scientific Research Project of Xinjiang Agricultural Professional Technological College (XJNZYKJ2016017). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. Alvarez-Garcia I. and Miska E. A. 2005 MicroRNA functions in animal development and human disease. Development 132, 4653–4662.CrossRefGoogle Scholar
  2. Anderson C., Catoe H. and Werner R. 2006 miR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res34, 5863–5871.CrossRefGoogle Scholar
  3. Bartel D. P. 2009 MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.CrossRefGoogle Scholar
  4. Chargé S. B. and Rudnicki M. A. 2004 Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209–238.CrossRefGoogle Scholar
  5. Chen C. F., Ridzon D. A., Broomer A. J., Zhou Z. H., Lee D. H., Nguyen J. T. et al. 2005 Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res33, e179.CrossRefGoogle Scholar
  6. Chen J. F., Mandel E. M., Thomson J. M., Wu Q. L., Callis T. E., Hammond S. M. et al. 2006 The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet38, 228–233.CrossRefGoogle Scholar
  7. Chu C. Y. and Rana T. M. 2006 Translation repression in human cells by microRNA induced gene silencing requires RCK/p54. PLoS Biol4, e210.CrossRefGoogle Scholar
  8. Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B. et al. 2006 A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet38, 813–818.CrossRefGoogle Scholar
  9. Crispo M., Mulet A. P., Tesson L., Barrera N., Cuadro F., dos Santos-Neto P. C. et al. 2015 Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One 10, e0136690.CrossRefGoogle Scholar
  10. Crist C. G., Montarras D., Pallafacchina G., Rocancourt D., Cumano A., Conway S. J. et al. 2009 Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc. Natl. Acad. Sci. USA 106, 13383–13387.CrossRefGoogle Scholar
  11. Dayanidhi S. and Lieber R. L. 2014 Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 50, 723–732.CrossRefGoogle Scholar
  12. Djuranovic S., Nahvi A. and Green R. 2012 miRNA-Mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237–241.CrossRefGoogle Scholar
  13. Grobet L., Martin L. J., Poncelet D., Pirottin D., Brouwers B., Riquet J. et al. 1997 A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71–74.CrossRefGoogle Scholar
  14. Helwak A., Kudla G., Dudnakova T. and Tollervey D. 2013 Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665.CrossRefGoogle Scholar
  15. Hwang H. W. and Mendel J. T. 2006 MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer 94, 776–780.CrossRefGoogle Scholar
  16. Lee R. C., Feinbaum R. I. and Ambros V. 1993 The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–846.Google Scholar
  17. Lewis B. P., Burge C. B. and Bartel D. P. 2005 Conserved seed pairing, often flanked by adenosines indicates that thousands of human genes are MicroRNA targets. Cell 120, 15–20.CrossRefGoogle Scholar
  18. Liu J., Rivas F. V., Wohlschlegel J., Yates J. R., Parker R. and Hannon G. J. 2005 A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1261–1266.CrossRefGoogle Scholar
  19. Maier A., McEwan J. C., Dodds K. G., Fischman D. A., Fitzsimons R. B. and Harris A. J. 1992 Myosin heavy chain composition of single myofibres and their origins and distribution in developing fascicles of sheep tibialis cranialis muscles. J. Muscle Res. Cell Motil. 13, 551–572.CrossRefGoogle Scholar
  20. Mathonnet G., Fabian M. R., Svitkin Y. V., Parsyan A., Huck L., Murata T. et al. 2007 MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767.CrossRefGoogle Scholar
  21. McCoard S. A., McNabb W. C., Peterson S. W., McCutcheon S. M. and Harris P. M. 2000 Muscle growth, cell number, type and morphometry in single and twin fetal lambs during mid to late gestation. Reprod. Fertil. Dev12, 319–327.CrossRefGoogle Scholar
  22. McPherron A. C. and Lee S. J. 1997 Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94, 12457–12461.CrossRefGoogle Scholar
  23. McPherron A. C., Lawler A. M. and Lee S. J. 1997 Regulation of skeletal muscle mass in mice by a new TGF-\(\upbeta \) superfamily member. Nature 387, 83–90.Google Scholar
  24. Miller J. B. 1992 Myoblast diversity in skeletal myogenesis: how much and to what end. Cell 69, 1–3.CrossRefGoogle Scholar
  25. Picard B., Lefaucheur L., Berri C. and Duclos M. J. 2002 Muscle fiber ontogenesis in farm animal species. Reprod. Nutr. Dev. 42, 415–431.CrossRefGoogle Scholar
  26. Rudnicki M. A., Le Grand F., McKinnell I. and Kuang S. 2008 The molecular regulation of muscle stem cell function. Cold Spring Harbor Symp. Quant. Biol73, 323–331.CrossRefGoogle Scholar
  27. Russell R. G. and Oteruelo F. T. 1981 An ultrastructural study of the differentiation of skeletal muscle in the bovine fetus. Anat. Embryol162, 403–417.CrossRefGoogle Scholar
  28. Sacco A., Doyonnas R., Kraft P., Vitorovic S. and Blau H. M. 2008 Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506.CrossRefGoogle Scholar
  29. Silvia M., Eugenio M., Paolo A. and Mario B. 2013 Functional effect of mir-27b on myostatin expression: a relationship in piedmontese cattle with double-muscled phenotype. BMC Genomics 14, 1–8.CrossRefGoogle Scholar
  30. Tajbakhsh S. 2009 Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. Intern. Med266, 372–389.CrossRefGoogle Scholar
  31. Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J. et al. 2000 Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem275, 40235–40243.CrossRefGoogle Scholar
  32. Wei W., He H. B., Zhang W. Y., Zhang H. X., Bai J. B., Liu H. Z. et al. 2013 miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis. 4, e668.CrossRefGoogle Scholar
  33. Wilson S. J., McEwan J. C., Sheard P. W. and Harris A. J. 1992 Early stages of myogenesis in a large mammals: formation of successive generations of myotubes in sheep tibialis muscle. J. Muscle Res. Cell Motil. 13, 534–550.CrossRefGoogle Scholar
  34. Yekta S., Shih I. H. and Bartel D. P. 2004 MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596.CrossRefGoogle Scholar
  35. Yin H., Pasut A., Soleimani V. D., Bentzinger C. F., Antoun G., Thorn S. et al. 2013 MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab17, 210–224.CrossRefGoogle Scholar
  36. Zhang W., Wang L. M., Zhou P., Song G. C., Shen M., Gan S. Q. et al. 2015 Identification and analysis of genetic variations in Pri-MiRNAs expressed specifically or at a high level in sheep skeletal muscle. PLoS One 10, e0117327.CrossRefGoogle Scholar
  37. Zhao Y., Samal E. and Srivastava D. 2005 Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Wei Zhang
    • 1
    • 2
  • Shi-Yin Wang
    • 1
    Email author
  • Shuang-Yi Deng
    • 1
  • Li Gao
    • 1
  • Li-Wei Yang
    • 1
  • Xiao-Na Liu
    • 1
  • Guo-Qing Shi
    • 1
    • 2
  1. 1.Xinjiang Agricultural Professional Technological CollegeChangjiPeople’s Republic of China
  2. 2.State Key Laboratory for Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural and Reclamation SciencesShiheziPeople’s Republic of China

Personalised recommendations