Advertisement

Journal of Genetics

, Volume 97, Issue 1, pp 267–274 | Cite as

Simultaneous estimation of QTL parameters for mapping multiple traits

  • Liang Tong
  • Xiaoxia Sun
  • Ying Zhou
Research Article
  • 50 Downloads

Abstract

The analysis of quantitative trait loci (QTLs) aims at mapping and estimating the positions and effects of the genes that may affect the quantitative trait, and evaluating the relationship between the gene variation and the phenotype. In existing studies, most methods mainly focus on the association/linkage between multiple gene loci and one trait, in which some useful joint information of multiple traits may be ignored. In this paper, we proposed a method of simultaneously estimating all QTL parameters in the framework of multiple-trait multiple-interval mapping. Simulation results show that in accuracy aspect, the proposed method outperforms an existing method for mapping multiple traits. A real example is also provided to validate the performance of the new method.

Keywords

EM algorithm estimation multiple-interval mapping recombination rate 

Notes

Acknowledgements

This research was supported by the Natural Science Foundation of Heilongjiang Province (A201207), the Science and Technology Innovation Team in Higher Education Institutions of Heilongjiang Province (no. 2014TD005), the Fundamental Research Funds on basic research project of Heilongjiang Provincial Colleges and Universities (no. 2016-KYYWF-0929), and the Innovation Project for University Students of Heilongjiang Province (no. 201610236006).

References

  1. Banerjee S., Yandell B. S. and Yi N. 2008 Bayesian quantitative trait loci mapping for multiple traits. Genetics 179, 2275–2289.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Calinski T., Kaczmarek Z. and Krajewski P. 2000 A multivariate approach to the problem of QTL localization. Heredity 84, 303–310.CrossRefPubMedGoogle Scholar
  3. Da Costa E Silva L., Wang S. C. and Zeng Z. B. 2012 Multiple trait multiple interval mapping of quantitative trait loci from inbred line crosses. BMC Genet. 13, 67.CrossRefGoogle Scholar
  4. Dempster A. P., Laird N. M. and Rubin D. B. 1977 Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. B 39, 1–38.Google Scholar
  5. Evans D. M. 2002 The power of multivariate quantitative-trait loci linkage analysis is influenced by the correlation between variables. Am. J. Hum. Genet. 70, 1599–1602.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Guo Z. and Nelson J. C. 2008 Multiple-trait quantitative trait locus mapping with incomplete phenotypic data. BMC Genet. 9, 82.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hackett C. A., Meyer R. C. and Thomas W. T. 2001 Multi-trait QTL mapping in barley using multivariate regression. Genet. Res. 77, 95–106.CrossRefPubMedGoogle Scholar
  8. Jiang C. and Zeng Z. B. 1995 Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111–1127.PubMedPubMedCentralGoogle Scholar
  9. Joehanes R. 2009 Multiple-trait multiple-interval mapping of quantitative-trait loci. Kansas State University, Manhattan.Google Scholar
  10. Kao C. H., Zeng Z. B. and Teasdale R. D. 1999 Multiple interval mapping for quantitative trait loci. Genetics 152, 1203–1216.PubMedPubMedCentralGoogle Scholar
  11. Knott S. A. and Haley C. S. 2000 Multitrait least squares for quantitative trait loci detection. Genetics 156, 899–911.PubMedPubMedCentralGoogle Scholar
  12. Korol A. B., Ronin Y. and Nevo E. 1998 Multi-interval mapping of correlated trait complexes. Heredity 80, 273–284.CrossRefGoogle Scholar
  13. Lander E. S. and Botstein D. 1989 Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.PubMedPubMedCentralGoogle Scholar
  14. Liu J., Liu Y., Liu X. and Deng H. W. 2007 Bayesian mapping of quantitative trait loci for multiple complex traits with the use of variance components. Am. J. Hum. Genet. 81, 304–320.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Malosetti M., Ribaut J. M., Vargas M., Crossa J. and van Eeuwijk F. A. 2008 A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161, 241–257.CrossRefGoogle Scholar
  16. Neuschl C., Brockmann G. A. and Knott S. A. 2007 Multiple-trait QTL mapping for body and organ weights in a cross between NMRI8 and DBA/2 mice. Genet. Res. 89, 47–59.CrossRefPubMedGoogle Scholar
  17. Thomasen J. R., Guldbrandtsen B. and Sørensen P. 2008 Quantitative trait loci affecting calving traits in Danish Holstein cattle. J. Dairy Sci. 91, 2098–2105.CrossRefPubMedGoogle Scholar
  18. Tong L., Ma W., Liu H., Yuan C. and Zhou Y. 2015 Simultaneous estimation of QTL effects and positions when using genotype data with errors. J. Genet. 94, 27–34.CrossRefPubMedGoogle Scholar
  19. Wittenburg H., Lyons M. A., Li R., Churchill G. A., Carey M. C. and Paigen B. 2003 FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice. Gastroenterology 125, 868–881.CrossRefPubMedGoogle Scholar
  20. Xu C., Li Z. and Xu S. 2005 Joint mapping of quantitative trait loci for multiple binary characters. Genetics 169, 1045–1059.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Zeng Z. B. 1994 Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.PubMedPubMedCentralGoogle Scholar
  22. Zhu W. S. and Zhang H. P. 2009 Why do we test multiple traits in genetic association studies? J. Korean Stat. Soc. 38, 1–10.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesHeilongjiang UniversityHarbinPeople’s Republic of China
  2. 2.School of Information EngineeringSuihua UniversitySuihuaPeople’s Republic of China

Personalised recommendations