Advertisement

Development and diversity of a novel panel of short tandem repeat markers encompassing the SCN5A gene in Iranian population

  • Zahra Zafari
  • Azam Amirian
  • Faezeh Rahimi Nejad
  • Vahid Akbari
  • Mohammad Taghi Akbari
  • Sirus Zeinali
Online Resources

Introduction

The SCN5A gene plays a key role in a variety of heterogeneous cardiac diseases such as congenital long QT syndrome, Brugada syndrome and sudden cardiac death. The substantial utility of highly polymorphic short tandem repeat (STR) markers in forensic and diagnosis purposes prompted us to develop and validate a panel of six novel STR markers encompassing the SCN5Agene. Allele frequencies and forensic statistics of six tetranucleotide tandem repeat markers identified by tandem repeats finder (TRF) and SERV programs and amplified in a six-plex PCR system were calculated in 60 unrelated Iranian healthy individuals. Fragment analysis revealed 6–10 alleles in six STR markers with an observed heterozygosity greater than 0.667 in five markers. The power of discrimination was more than 0.83 for the panel. This novel panel of six polymorphic STR markers with high level of heterozygosity and discrimination in each locus can help to establish a rapid and more reliable identification...

Keywords

cardiac disease forensic STR marker allele frequency population data Iran 

Notes

Acknowledgements

This research was supported by Pasteur Institute of Iran (grant no. 824).

References

  1. Benson D. W., Wang D. W., Dyment M., Knilans T. K., Fish F. A., Strieper M. J. et al. 2003 Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Invest. 112, 1019–1028.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Butler J. M. 2007 Short tandem repeat typing technologies used in human identity testing. BioTechniques 43, Sii–Sv.Google Scholar
  3. Chen Q., Kirsch G. E., Zhang D., Brugada R., Brugada J., Brugada P. et al. 1998 Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296.CrossRefPubMedGoogle Scholar
  4. Darbar D., Kannankeril P. J., Donahue B. S., Kucera G., Stubblefield T., Haines J. L. et al. 2008. Cardiac sodium channel variants associated with atrial bibrillation. Circulation 117, 1927.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benson G. 1999 Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Haas J., Frese K. S., Peil B., Kloos W., Keller A., Nietsch R. et al. 2014 Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36, 1123.CrossRefPubMedGoogle Scholar
  7. Hamosh A., Scott A. F., Amberger J. S., Bocchini C. A. and McKusick V. A. 2005 Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514–D517.CrossRefPubMedGoogle Scholar
  8. Hertz C. L., Christiansen S. L., Ferrero-Miliani L., Fordyce S. L., Dahl M., Holst A. G. et al. 2015. Next-generation sequencing of 34 genes in sudden unexplained death victims in forensics and in patients with channelopathic cardiac diseases. Int. J. Legal Med. 129, 793–800.CrossRefPubMedGoogle Scholar
  9. Kauferstein S., Kiehne N., Peigneur S., Tytgat J. and Bratzke H. 2013 Cardiac channelopathy causing sudden death as revealed by molecular autopsy. Int. J. Legal Med. 127, 145–151.CrossRefPubMedGoogle Scholar
  10. Landrum M. J., Lee J. M., Benson M., Brown G., Chao C., Chitipiralla S. et al. 2016 ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868.CrossRefPubMedGoogle Scholar
  11. Legendre M., Pochet N., Pak T. and Verstrepen K. J. 2007 Sequence-based estimation of minisatellite and microsatellite repeat variability. Genome Res. 17, 1787–1796.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Miller S. A., Dykes D. D. and Polesky H. F. 1988 A simple salting out procedure forextracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Reed G. J., Boczek N. J., Etheridge S. P. and Ackerman M. J. 2015 CALM3 mutation associated with long QT syndrome. Heart Rhythm 12, 419–422.CrossRefPubMedGoogle Scholar
  14. Rabbani B., Khanahmad H., Bagheri R., Mahdieh N. and Zeinali S. 2008 Characterization of minor bands of STR amplification reaction of FVIII gene by PCR cloning. Clin. Chim. Acta. 394, 114–115.CrossRefPubMedGoogle Scholar
  15. Sieira J., Dendramis G. and Brugada P. 2016 Pathogenesis and management of Brugada syndrome. Nat. Rev. Cardiol. 13, 744–756.CrossRefPubMedGoogle Scholar
  16. Tester D. J. and Ackerman M. J. 2014 Genetics of long QT syndrome. Method. DeBakey Cardiovasc. J. 10, 29–33.CrossRefGoogle Scholar
  17. Tester D. J., Medeiros-Domingo A., Will M. L., Haglund C. M., and Ackerman M. J. 2012 Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin. Proc. 87, 524–539.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Zaklyazminskayaa E. and Dzemeshkevicha S. 2016 The role of mutations in the SCN5A gene in cardiomyopathies. Biochim. Biophys. Acta 1863, 1799–1805.CrossRefGoogle Scholar
  19. Zupanič Pajnič I., Gornjak Pogorelc B. and Balažic J. 2010 Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia. Int. J. Legal Med. 124, 307–317.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Faculty of Medical Sciences, Department of Medical GeneticsTarbiat Modares UniversityTehranIran
  2. 2.Department of Molecular Medicine, Biotechnology Research CenterPasteur Institute of IranTehranIran
  3. 3.Medical Genetics LabKawsar Human Genetics Research CenterTehranIran

Personalised recommendations