Advertisement

Association mapping and favourable QTL alleles for fibre quality traits in Upland cotton (Gossypium hirsutum L.)

  • Cheng-Guang Dong
  • Juan Wang
  • Yu Yu
  • Bao-Cheng Li
  • Quan-Jia Chen
Online Resources

Abstract

Improving cotton fibre quality is a major breeding goal for Upland cotton in China. To investigate the genetic mechanisms of fibre quality, a diverse panel of 403 Upland cotton accessions was grown, and the fibre quality traits were measured in six different environments. Genotyping was performed with genomewide simple sequence repeats. A total of 201 markers were polymorphic and generated 394 allele loci, and 403 accessions were arranged into two subgroups using Structure software. Of the marker loci, 18.94% showed significant linkage disequilibrium (\(P< 0.05\)). A mixed linear model in association mapping showed that 51 associations were significant between 39 polymorphic loci and five fibre quality traits, according to best linear unbiased prediction, and in at least three of six environments. Of the 39 associated marker loci, 12 were coincident with previous studies. There were 41 typical accessions identified as containing favourable allele loci related to fibre quality traits. The identified favourable QTL alleles and typical accessions for fibre quality are excellent genetic resources for future cotton breeding in China.

Keywords

Upland cotton fibre quality association mapping favourable allele Gossypium hirsutum

Notes

Acknowledgements

This programme was financially supported by The National Natural Science Foundation of China (31260340). We thank Fang Lei, Zeng Yanda, and Wang Qun from Nanjing Agricultural University for help with analysis.

Supplementary material

12041_2017_878_MOESM1_ESM.docx (421 kb)
Supplementary material 1 (docx 421 KB)

References

  1. Abdurakhmonov I. Y., Buriev Z. T., Saha S., Pepper A. E., Musaev J. A., Almatov A. et al. 2007 Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum. Euphytica 156, 141–156.CrossRefGoogle Scholar
  2. Abdurakhmonov I. Y., Saha S., Jenkins J. N., Buriev Z. T., Shermatov S. E., Scheffler B. E. et al. 2009 Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136, 401–417.Google Scholar
  3. An C. F., Jenkins J. N., Wu J. X., Guo Y. F. and McCarty J. C. 2010 Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton. Euphytica 172, 21–34.CrossRefGoogle Scholar
  4. Badigannavar A. and Myers G. O. 2015 Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). J. Genet. 94, 87–94.CrossRefPubMedGoogle Scholar
  5. Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y. and Buckler E. S. 2007 TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635.CrossRefPubMedGoogle Scholar
  6. Cai C. P., Ye W. X., Zhang T. Z. and Guo W. Z. 2014 Association analysis of fiber quality traits and exploration of elite alleles in upland cotton cultivars/accessions (Gossypium hirsutum L.). J. Integr. Plant Biol. 56, 51–62.CrossRefPubMedGoogle Scholar
  7. Cardon L. R. and Palmer L. J. 2003 Population stratification and spurious allelic association. Lancet 361, 598–604.CrossRefPubMedGoogle Scholar
  8. Chen X. D., Guo W. Z., Liu B. L., Zhang Y. M., Song X. L., Cheng Y. et al. 2012 Molecular mechanisms of fiber differential development between G. barbadense and G. hirsutum revealed by genetical genomics. PLoS One 7, e30056.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Z. J., Scheffler B. E., Dennis E., Triplett B. A., Zhang T. Z., Guo W. Z. et al. 2007 Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 145, 1303–1310.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Evanno G., Regnauts S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620.CrossRefPubMedGoogle Scholar
  11. Fang D. D., Xiao J., Canci P. C. and Cantrell R. G. 2010 A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 120, 943–953.CrossRefPubMedGoogle Scholar
  12. Fang D. D., Jenkins J. N., Deng D. D., Mccarty J. C., Li P. and Wu J. X. 2014 Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics 15, 397.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guo X., Guo Y. P., Ma J., Wang F., Sun M. Z., Gui L. J.et al. 2013 Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J. Integr. Plant Biol. 55, 759–774.CrossRefPubMedGoogle Scholar
  14. Hu W. J., Zhang X. Y., Zhang T. Z. and Guo W. Z. 2008 Molecular tagging and source analysis of QTL for elite fiber quality in upland cotton. Acta Agron. Sin. 34, 578–586.CrossRefGoogle Scholar
  15. Jiao G. J., Sun J. L., He S. P., Yang X. D. and Du X. M. 2014 Variation trends of main characters of upland cotton varieties in China during 1978–2007. Chin. Agric. Sci. Bull. 30, 112–119.Google Scholar
  16. Lacape J. M. and Nguyen T. B. 2005 Mapping quantitative trait loci associated with leaf and stein pubescence in cotton. J. Hered. 96, 441–444.CrossRefPubMedGoogle Scholar
  17. Lacape J. M., Nguyen T. B., Courtois B., Belot J. L., Giband M., Gourlot J. P. et al. 2005 QTL analysis of cotton fiber quality using multiple G. hirsutum \(\times \) G. barbadense backcross generations. Crop Sci. 45, 123–140.CrossRefGoogle Scholar
  18. Lacape J. M., Dessauw D., Rajab M., Noyer J. L. and Hau B. 2007 Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol. Breed. 19, 45–58.CrossRefGoogle Scholar
  19. Lacape J. M., Gawrysiak G., Cao T. V., Viot C., Llewellyn D., Liu S. et al. 2013 Mapping QTLs for traits related to phenology, morphology and yield components in an inter-specific Gossypium hirsutum \(\times \) G. barbadense cotton RIL population. Field. Crops. Res. 144, 256–267.CrossRefGoogle Scholar
  20. Li C. Q., Zhang J. B., Hu G. H., Fu Y., Z. and Wang Q. L. 2016a Association mapping and favorable allele mining for node of first fruiting/sympodial branch and its height in Upland cotton (Gossypium hirsutum L.). Euphytica 210, 57–68.CrossRefGoogle Scholar
  21. Li C. Q., Song L., Zhao H. H. and Wang Q. L. 2014 Quantitative trait loci mapping for plant architecture traits across two upland cotton populations using SSR markers. J. Agric. Sci. 152, 275–287.CrossRefGoogle Scholar
  22. Li C. Q., Ai N. J., Zhu Y. J., Wang Y. Q., Chen X. D., Li F. et al. 2016b Association mapping and favorable allele exploration for plant architecture traits in Upland cotton (Gossypium hirsutum L.) accessions. J. Agric. Sci. 154, 567–583.CrossRefGoogle Scholar
  23. Li F. G., Fan G. Y., Lu C. R., Xiao G. H., Zou C. S., Kohel R. J. et al. 2015 Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotech. 33, 524–530.CrossRefGoogle Scholar
  24. Li X. M., Yuan D. J., Wang H. T., Chen X. M., Wang B., Lin Z. X. and Zhang X. L. 2012 Increasing cotton genome coverage with polymorphic SSRs as revealed by SSCP. Genome 55, 459–470.CrossRefPubMedGoogle Scholar
  25. Li X. M., Yuan D. J., Zhang J. F., Lin Z. X. and Zhang X. L. 2013 Genetic mapping and characteristics of genes specifically or preferentially expressed during fiber development in cotton. PLoS One 8, e54444.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li X. S. and Chen Z. Z. 2010 Correctly using SPSS software for principal components analysis. Stat. Res. 27, 105–108.Google Scholar
  27. Liang Q. Z., Hu C., Hua H., Li Z. F. and Hua J. P. 2013 Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chin. Sci. Bull. 58, 3233–3243.CrossRefGoogle Scholar
  28. Liu G. Z., Mei H. X., Wang S., Li X. H., Zhu X. F. and Zhang T. Z. 2015 Association mapping of seed oil and protein contents in upland cotton. Euphytica 205, 637–645.CrossRefGoogle Scholar
  29. Liu K. J. and Muse S. V. 2005 PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129.CrossRefPubMedGoogle Scholar
  30. Liu R. Z., Ai N. J., Zhu X. X., Liu F. J., Guo W. Z. and Zhang T. Z. 2014 Genetic analysis of plant height using two immortalized populations of “CRI12 \(\times \) J8891” in Gossypium hirsutum L. Euphytica 196, 51–61.CrossRefGoogle Scholar
  31. Luan M., Guo X., Zhang Y., Yao J. and Chen W. 2009 QTL mapping for agronomic and fibre traits using two interspecific chromosome substitution lines of upland cotton. Plant Breed. 128, 671–679.CrossRefGoogle Scholar
  32. Magadum S., Banerjee U., Ravikesavan R., Thiyagu K., Boopathi N. M. and Rajarathinam S. 2012 Association analysis of yield and fibre quality characters in interspecific population of cotton (Gossypium spp.). J. Crop Sci. Biotech. 15, 239–243.CrossRefGoogle Scholar
  33. Mei H. X., Zhu X. F. and Zhang T. Z. 2013 Favorable QTL alleles for yield and its components identified by association mapping in Chinese upland cotton cultivars. PLoS One 8, e82193.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Meredith W. R. 2005 Registration of MD 52ne high fiber quality cotton germplasm and recurrent parent MD 90ne. Crop Sci. 45, 806–807.CrossRefGoogle Scholar
  35. Nie X. H., Huang C., You C. Y., Li W., Zhao W. X., Shen C. et al. 2016 Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genomics. 17, 352.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ning Z. Y., Zhao R., Chen H., Ai N. J., Zhang X., Zhao J. et al. 2013 Molecular tagging of a major QTL for broad-spectrum resistance to Verticillium wilt in upland cotton cultivar Prema. Crop Sci. 53, 2304–2312.CrossRefGoogle Scholar
  37. Paterson A. H., Brubaker C. L. and Wendel J. F. 1993 A rapid method for extraction of cotton (Gossypium spp) genomic DNA suitable for RFLP or PCR analysis. Plant Mol. Biol. Rep. 11, 122–127.CrossRefGoogle Scholar
  38. Paterson A. H., Saranga Y., Menz M., Jiang C. X. and Wright R. J. 2003 QTL analysis of genotype \(\times \) environment interactions affecting cotton fiber quality. Theor. Appl. Genet. 106, 384–396.CrossRefPubMedGoogle Scholar
  39. Patterson N., Price A. L. and Reich D. 2006 Population structure and eigen analysis. PLoS Genet. 2, e190.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pritchard J. K., Stephens M., Rosenberg N. A. and Donnelly P. 2000 Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pritchard J. K., Wen X. and Falush D. 2009 Documentation for structure software: version 2.3. Available at: http://pritch.bsd.uchicago.edu/structure.html (last accessed on 5 December 2015).
  42. Qin H. D., Guo W. Z., Zhang Y. M. and Zhang T. Z. 2008 QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor. Appl. Genet. 117, 883–894.CrossRefPubMedGoogle Scholar
  43. Qin H. D., Chen M., Yi X. D., Bie S., Zhang C., Zhang Y. C. et al. 2015 Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections. PLoS One 10, e0118073.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Qin Y. S., Liu R. Z., Mei H. X., Zhang T. Z. and Guo W. Z. 2009a QTL mapping for yield traits in upland cotton (Gossypium hirsutum L). Acta Agron. Sin. 10, 1812–1821.CrossRefGoogle Scholar
  45. Qin Y. S., Ye W. X., Liu R. Z., Zhang T. Z. and Guo W. Z. 2009b QTL mapping for fiber quality properties in upland cotton (Gossypium hirsutum L.). Sci. Agric. Sin. 42, 4145–4154.Google Scholar
  46. Saeed M., Guo W. Z. and Zhang T. Z. 2014 Association mapping for salinity tolerance in cotton (Gossypium hirsutum L.) germplasm from US and diverse regions of China. Aust. J. Crop Sci. 8, 338–346.Google Scholar
  47. Said J. I., Lin Z. X., Zhang X. L., Song M. Z. and Zhang J. F. 2013 A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14, 776.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Shen X. L., Guo W. Z., Zhu X. F., Yuan Y. L., Yu J. Z., Kohel R. J. et al. 2005 Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol. Breed. 15, 169–181.Google Scholar
  49. Shen X. L., Zhang T. Z., Guo W. Z., Zhu X. F. and Zhang X. Y. 2006 Mapping fiber and yield QTLs with main, epistatic, and QTL \(\times \) environment interaction effects in recombinant inbred lines of upland cotton. Crop. Sci. 46, 61–66.CrossRefGoogle Scholar
  50. Shen X. L., Guo W. Z., Zhu X. F., Yuan Y. L. and Zhang T. Z. 2007 Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155, 371–380.CrossRefGoogle Scholar
  51. Song M. Z., Yu S. X., Fan S. L., Ruan R. and Huang Z. M. 2005 Genetic analysis of main agronomic traits in short season upland cotton (G. hirsutum L.). Cotton Sci. 17, 94–98.Google Scholar
  52. Song X. L. and Zhang T. Z. 2009 Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci. 177, 317–323.CrossRefGoogle Scholar
  53. Stich B., Maurer H. P., Melchinger A. E., Frisch M., Heckenberger M., van der Voort J. R. et al. 2006 Comparison of linkage disequilibrium in elite European maize inbred lines using AFLP and SSR markers. Mol. Breed. 17, 217–226.CrossRefGoogle Scholar
  54. Ulloa M., Hutmacher R. B., Roberts P. A., Wright S. D., Nichols R. L. and Davis R. M. 2013 Inheritance and QTL mapping of fusarium wilt race 4 resistance in cotton. Theor. Appl. Genet. 126, 1405–1418.CrossRefPubMedGoogle Scholar
  55. Wang C., Zhang T. Z. and Guo W. Z. 2013 The mutant gene negatively affects many aspects of fiber quality traits and lint percentage in cotton. Crop Sci. 53, 27–37.CrossRefGoogle Scholar
  56. Wang P., Zhu Y. J., Song X. L., Cao Z. B., Ding Y. Z., Liu B. L. et al. 2012 Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor. Appl. Genet. 124, 1415–1428.CrossRefPubMedGoogle Scholar
  57. Wang Y. Q., Li J. W., Shi Y. Z., Liu A. Y., Shan H. H., Gong J. W. et al. 2010 Molecular marker of QTL for fiber quality traits in upland cotton with elite fiber quality. Cotton Sci. 22, 533–538.Google Scholar
  58. Yang X. H., Yan J. B., Zheng Y. P., Yu J. M. and Li J. S. 2007 Reviews of association analysis for quantitative traits in plants. Acta Agron. Sin. 33, 523–530.Google Scholar
  59. Yu J. W., Zhang K., Li S. Y., Yu S. X., Zhai H. H., Wu M. et al. 2013a Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum \(\times \) Gossypium barbadense backcross inbred line population. Theor. Appl. Genet. 126, 275–287.CrossRefPubMedGoogle Scholar
  60. Yu J. W., Yu S. X., Gore M., Wu M., Zhai H. H., Li X. L.et al. 2013b Identification of quantitative trait loci across interspecific \(\text{ F }_{2}\), \(\text{ F }_{2:3}\) and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica 191, 375–389.CrossRefGoogle Scholar
  61. Zeng L. H., Meredith Jr W. R., Gutiérrez O. A. and Boykin D. L. 2009 Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. Theor. Appl. Genet. 119, 93–103.CrossRefPubMedGoogle Scholar
  62. Zhang J., Lu Y., Cantrell R. G. and Hughs E. 2005 Molecular marker diversity and field performance in commercial cotton cultivars evaluated in the Southwestern USA. Crop Sci. 45, 1483–1490.CrossRefGoogle Scholar
  63. Zhang J., Ma J., Chen X., Liu D. J. and Zhang Z. S. 2011 QTL mapping of fiber quality traits with a composite cross population in upland cotton (Gossypium hirsutum L.). J. Agric. Biotech. 19, 230–235.Google Scholar
  64. Zhang T. Z., Hu Y., Jiang W. K., Fang L., Guan X. Y., Chen J. D. et al. 2015 Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotech. 33, 531–537.Google Scholar
  65. Zhao L., Lv Y. D., Cai C. P., Tong X. C., Chen X. D., Zhang W. et al. 2012 Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics 13, 539.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhao Y. L., Wang H. M., Wei C. W. and Li Y. H. 2014 Genetic structure, linkage disequilibrium and association mapping of verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS One 9, e86308.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhu C., Gore M., Buckler E. S. and Yu J. M. 2008 Status and prospects of association mapping in plants. Plant Genome 1, 5–20.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Cheng-Guang Dong
    • 1
    • 2
  • Juan Wang
    • 2
  • Yu Yu
    • 2
  • Bao-Cheng Li
    • 2
  • Quan-Jia Chen
    • 1
  1. 1.College of AgricultureXinjiang Agricultural University, Xinjiang Uygur Autonomous RegionUrumqiPeople’s Republic of China
  2. 2.Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Key Laboratory of China Northwesten Inland RegionMinistry of AgricultureShiheziPeople’s Republic of China

Personalised recommendations