Journal of Genetics

, Volume 96, Issue 1, pp 187–201 | Cite as

CYP/PON genetic variations as determinant of organophosphate pesticides toxicity

REVIEW ARTICLE

Abstract

In the present scenario of increased accumulation of pesticides in the environment, it is important to understand its impact on human health. The focus is on gene–environment interaction, highlighting the consequences and factors that may halt the biotransformation of some pesticides and change their actual dose response curve due to mixed exposure to pesticides. The paraoxonase and cytochrome P450 gene families are involved in the metabolism of oxon derivate (toxic than its parent compound) of organophosphate pesticides, thus, mutations in these genes may impact the metabolic outcome of pesticides and subsequent health hazards. The complex multi gene–environment interaction and one gene – one risk factor are two different aspects to understand the potential health effect related to environmental exposure studies. The genetic polymorphisms are associated with varying levels of risk within the population, as gene products of varied genotype alter the biotransformation of exogenous/endogenous substrates. This paper is aimed to review the impact of endogenous and exogenous factors on a mechanistic pathway of organophosphate pesticide biotransformation and various risk associated with it among the human population. Understanding the genetic polymorphism of genes involved in pesticide metabolism and highlighting the gene isoform dependent interindividual differences to metabolize particular pesticides may help us to unravel the reasons behind differential toxicity for pesticides exposure than expected.

Keywords

organophosphate pesticides xenobiotics cytochrome P450 paraoxonase genetic polymorphisms. 

Notes

Acknowledgements

We thank Vice-Chancellor of CUPB for the support. The work was supported by CUPB-RSM and UGC start-up grants. GK is also thankful to UGC for Moalana Azad National Fellowship. We also thank Dr Alpna Saini, Centre for Classical and Modern Languages, Central University of Punjab, for editing and improving the language.

References

  1. Abass K., Reponen P., Jalonen J. and Pelkonen O. 2007 In vitro metabolism and interaction of profenofos by human, mouse and rat liver preparations. Pest. Biochem. Physiol. 87, 238–247.CrossRefGoogle Scholar
  2. Abass K., Reponen P., Mattila S., Rautio A. and Pelkonen O. 2014 Human variation and CYP enzyme contribution in benfuracarb metabolism in human in vitro hepatic models. Toxicol. Lett. 224, 300–309.PubMedCrossRefGoogle Scholar
  3. Abass K., Turpeinen M., Rautio A., Hakkola J. and Pelkonen O. 2012 Metabolism of pesticides by human cytochrome p450 enzymes in vitro—a survey. In Insecticides—advances in integrated pest management, pp. 165–194. InTech Open Access Publisher, New York, USA.Google Scholar
  4. Agachan B., Yilmaz H., Karaali Z. and İsbir T. 2004 Paraoxonase 55 and 192 polymorphism and its relationship to serum paraoxonase activity and serum lipids in Turkish patients with non-insulin dependent diabetes mellitus. Cell Biochem. Funct. 22, 163–168.PubMedCrossRefGoogle Scholar
  5. Aksoy-Sagirli P., Cakmakoglu B., Isbir T., Kaytan-Saglam E., Kizir A., Topuz E. et al. 2011 Paraoxonase-1 192/55 polymorphisms and the risk of lung cancer in a Turkish population. Anticancer Res. 31, 2225–2229.PubMedGoogle Scholar
  6. Al-Hakeem M. M., Abotalib Z., Alharbi K. K. and Khan I. A. 2014 Relationship between the paraoxonase 1 gene glutamine 192 to arginine polymorphism and gestational diabetes mellitus in Saudi women. Clin. Biochem. 47, 122–125.PubMedCrossRefGoogle Scholar
  7. Andersen H. R., Wohlfahrt-Veje C., Dalgård C., Christiansen L., Main K. M., Nellemann C. et al. 2012 Paraoxonase 1 polymorphism and prenatal pesticide exposure associated with adverse cardiovascular risk profiles at school age. PLoS One 7, e368hHH30.CrossRefGoogle Scholar
  8. Anuradha A., Lakshmi-Kalpana V., Kirmani N. and Rao P. J. 2016 CYP polymorphism and its association with tobacco usage and susceptibility to head and neck cancer. In Next generation DNA led technologies (ed. S. Avadhanam, G. Jyothsna and A. Kashyap), pp. 35–48. Springer, Singapore.Google Scholar
  9. Atasoy H., Güleç-Yilmaz S., Ergen A., Görmüş U., Küçükhüseyin Ö., Dalan B. et al. 2015 Paraoxonase1 192 (PON1 192) gene polymorphism and serum paraoxonase activity in panic disorder patients. In Vivo 29, 51–54.PubMedGoogle Scholar
  10. Attar R., Atasoy H., Inal-gültekin G. Ü. L. D. A. L., Timirci-Kahraman Ö. Z. L. E. M., Güleç-Yilmaz S. E. D. A., Dalan A. B. et al. 2015 The effects of PON1 gene Q192R variant on the development of uterine leiomyoma in Turkish patients. In Vivo 29, 243–246.PubMedGoogle Scholar
  11. Atterberry T. T., Burnett W. T. and Chambers J. E. 1997 Age-related differences in parathion and chlorpyrifos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism. Toxicol. Appl. Pharmacol. 147, 411–418.PubMedCrossRefGoogle Scholar
  12. Bahrehmand F., Vaisi-Raygani A., Ahmadi R., Kiani A., Rahimi Z., Tavilani H. and Pourmotabbed T. 2013 Paraoxonase (PON1) 55 polymorphism and association with systemic lupus erythematosus. Iran J. Allergy Asthma Immunol. 12, 211–219.PubMedGoogle Scholar
  13. Baker J. R., Satarug S., Reilly P. E. B., Edwards R. J., Ariyoshi N., Kamataki N. et al. 2001 Relationships between non-occupational cadmium exposure and expression of nine cytochrome P450 forms in human liver and kidney cortex samples. Biochem. Pharmacol. 62, 713–721.PubMedCrossRefGoogle Scholar
  14. Baker J. R., Satarug S., Urbenjapol S., Edwards R. J., Williams D. J. et al. 2002 Associations between human liver and kidney cadmium content and immunochemically detected CYP4A11 apoprotein. Biochem. Pharmacol. 63, 693–696.PubMedCrossRefGoogle Scholar
  15. Bakke M. and Lund J. 1995 Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3,5-monophosphate responsive sequence in the bovine CYP17 gene. Mol. Endocrinol. 9, 327–339.PubMedGoogle Scholar
  16. Bednarska-Makaruk M. E., Krzywkowski T., Graban A., Lipczyńska-Łojkowska W., Bochyńska A., Rodo M. et al. 2013 Paraoxonase 1 (PON1) gene –108C>T and p.Q192R polymorphisms and arylesterase activity of the enzyme in patients with dementia Folia. Neuropathology 51, 111–119.Google Scholar
  17. Billecke S., Draganov D., Counsell R., Stetson P., Watson C., Hsu C. et al. 2000 Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metab. Dispos. 28, 1335–1342.PubMedGoogle Scholar
  18. Blanco-Munoz J., Aguilar-Garduño C., Gamboa-Avila R., Rodríguez-Barranco M., Perez-Mendez O., Huesca-Gomez C. et al. 2013 Association between PON1 genetic polymorphisms and miscarriage in mexican women exposed to pesticides . Sci. Total Environ. 449, 302–308.PubMedCrossRefGoogle Scholar
  19. Blatter M. C., James R. W., Messmer S., Barja F. and Pometta D. 1993 Identification of a distinct human high-density lipoprotein subspecies defined by a lipoprotein-associated protein, k-45 . Eur. J. Biochem. 211, 871–879.PubMedCrossRefGoogle Scholar
  20. Bonner M. R., Williams B. A., Rusiecki J. A., Blair A., Freeman L. E. B., Hoppin J. A. et al. 2010 Occupational exposure to terbufos and the incidence of cancer in the agricultural health study. Cancer Causes Control 21, 871–877.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Boshtam M., Emami Razavi A., Pourfarzam M., Ani M., Naderi G. A., Basati G. et al. 2013 Serum paraoxonase 1 activity is associated with fatty acid composition of high density lipoprotein. Dis. Markers 35, 273–280.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bounafaa A., Berrougui H., Ikhlef S., Essamadi A., Nasser B., Bennis A. et al. 2014 Alteration of HDL functionality and PON1 activities in acute coronary syndrome patients. Clin. Biochem. 47, 318–325.PubMedCrossRefGoogle Scholar
  23. Brophy V. H., Jampsa R. L., Clendenning J. B., McKinstry L. A., Jarvik G. P. and Furlong C. E. 2001 Effects of 5 regulatory-region polymorphisms on paraoxonase-gene (PON1) expression. Am. J. Hum. Genet. 68, 1428–1436.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Buratti F. M., D’aniello A., Volpe M. T., Meneguz A. and Testai E. 2005 Malathion bioactivation in the human liver: the contribution of different cytochrome P450 isoforms. Drug Metab. Dispos. 33, 295–302.PubMedCrossRefGoogle Scholar
  25. Buratti F. M., Volpe M. T., Fabrizi L., Meneguz A., Vittozzi L. and Testai E. 2002 Kinetic parameters of opt pesticide desulphuration by c-DNA expressed human CYPS. Environ. Toxicol. Pharmacol. 11, 181–190.PubMedCrossRefGoogle Scholar
  26. Buratti F. M., Volpe M. T., Meneguz A., Vittozzi L. and Testai E. 2003 CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes. Toxicol. Appl. Pharmacol. 186, 143–154.PubMedCrossRefGoogle Scholar
  27. Butler A. M. and Murray M. 1997 Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation. J. Pharmacol. Exp. Ther. 280, 966–973.PubMedGoogle Scholar
  28. Campo S., Sardo A. M., Campo G. M., Avenoso A., Castaldo M., D’Ascola A. et al. 2004 Identification of paraoxonase 3 gene (PON3) missense mutations in a population of southern Italy. Mutat. Res. Fund Mol. Mech. Mut. 546, 75–80.CrossRefGoogle Scholar
  29. Carlone D. L. and Richards J. S. 1997 Functional interactions, phosphorylation, and levels of 3 ,5-cyclic adenosine monophosphate-regulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells. Mol. Endocrinol. 11, 292–304.PubMedGoogle Scholar
  30. Casida J. E. 2010 Curious about pesticide action. J. Agricult. Food Chem. 59, 2762–2769.CrossRefGoogle Scholar
  31. Chen S., Wang K. and Wan Y. J. 2010 Retinoids activate RXR/CAR-mediated pathway and induce CYP3A. Biochem. Pharmacol. 79, 270–276.PubMedCrossRefGoogle Scholar
  32. Choi J., Hodgson E. and Rose R. L. 2004 Inhibition of trans-permethrin hydrolysis in human liver fractions by chloropyrifosoxon and carbaryl. Drug Metabol. Drug Interact. 20, 233–246.PubMedCrossRefGoogle Scholar
  33. Costa L. G., Cole T. B., Jarvik G. P. and Furlong C. E. 2003 Functional genomics of the paraoxonase (PON1) polymorphisms: effects on pesticide sensitivity, cardiovascular disease, and drug metabolism. Annu. Rev. Med. 54, 371–392.PubMedCrossRefGoogle Scholar
  34. Costa L. G., Vitalone A., Cole T. B. and Furlong C. E. 2005 Modulation of paraoxonase (PON1) activity. Biochem. Pharmacol. 69, 541–550.PubMedCrossRefGoogle Scholar
  35. Crane A. L., Klein K., Zanger U. M. and Olson J. R. 2012 Effect of CYP2B6* 6 and CYP2C19* 2 genotype on chlorpyrifos metabolism. Toxicology 293, 115–122.PubMedPubMedCentralCrossRefGoogle Scholar
  36. D’Agostino J., Zhang H., Kenaan C. and Hollenberg P. F. 2015 Mechanism-based inactivation of human cytochrome P450 2B6 by chlorpyrifos. Chem. Res. Toxicol. 28, 1484–1495.PubMedCrossRefGoogle Scholar
  37. Dadachanji R., Shaikh N., Khavale S., Patil A., Shah N. and Mukherjee S. 2015 PON1 polymorphisms are associated with polycystic ovary syndrome susceptibility, related traits, and PON1 activity in Indian women with the syndrome. Fertil. Steril. 104, 207–216.PubMedCrossRefGoogle Scholar
  38. Davies H. G., Richter R. J., Keifer M., Broomfield C. A., Sowalla J. and Furlong C. E. 1996 The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, somanandsarin. Nat. Genet. 14, 334–336.PubMedCrossRefGoogle Scholar
  39. Debord J., Dantoine T., Bollinger J. C., Abraham M. H., Verneuil B. and Merle L. 1998 Inhibition of arylesterase by aliphatic alcohols. Chem. Biol. Interact. 113, 105–115.PubMedCrossRefGoogle Scholar
  40. Du L., Neis M. M., Ladd P. A. and Keeney D. S. 2006 Differentiation-specific factors modulate epidermal CYP1–4 gene expression in human skin in response to retinoic acid and classic aryl hydrocarbon receptor ligands. J. Pharmacol. Exp. Ther. 319, 1162–1171.PubMedCrossRefGoogle Scholar
  41. Dursun A., Cicek S., Keni F. M., Karakas-Celik S., Sezer T. and Altinyazar C. H. 2014 The relation of PON1-L55M gene polymorphism and clinical manifestation of Behcet’s disease. Acta Biochim. Pol. 61, 271–274.PubMedGoogle Scholar
  42. Dzul-Caamal R., Domínguez-Lòpez M. L., Olivares-Rubio H. F., García-Latorre E. and Vega-López A. 2014 The relationship between the bioactivation and detoxification of diazinon and chlorpyrifos, and the inhibition of acetylcholinesterase activity in Chirostoma jordani from three lakes with low to high organophosphate pesticides contamination. Ecotoxicology 23, 779–790.PubMedCrossRefGoogle Scholar
  43. Eddleston M., Mohamed F., Davies J. O., Eyer P., Worek F., Sheriff M. R. et al. 2006 Respiratory failure in acute organophosphorus pesticide self-poisoning. QJM 99, 513–522.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Edwards T. M. and Myers J. P. 2008 Environmental exposures and gene regulation in disease etiology. Cien Saude Colet. 13, 269–281.PubMedCrossRefGoogle Scholar
  45. El-Banna H. and Jiman-Fatani A. 2014 Anti-cyclic citrullinated peptide antibodies and paraoxonase-1 polymorphism in rheumatoid arthritis. BMC Musculoskelet. Disord. 15, 379.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Erlich P. M., Lunetta K. L., Cupples L. A., Huyck M., Green R. C., Baldwin C. T. et al. 2006 Polymorphisms in the PON gene cluster are associated with Alzheimer disease. Hum. Mol. Gen. 15, 77–85.PubMedCrossRefGoogle Scholar
  47. Ernest H. and Andrew D. W. 2012 Human metabolic interactions of pesticides: Inhibition, induction, and activation, parameters for pesticide qsar and pbpk/pd models for human risk assessment. Am. Chem. Soc. 1099, 115–132.Google Scholar
  48. Farcas A., Matei A. V., Florian C., Badea M. and Coman G. 2013 Health effects associated with acute and chronic exposure to pesticides. In Environmental security assessment and management of obsolete pesticides in southeast Europe, pp. 103–110. Springer, Dordrecht, The Netherlands.Google Scholar
  49. Feingold K. R., Memon R. A., Moser A. H. and Grunfeld C. 1998 Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase responses. Atherosclerosis 139, 307–315.PubMedCrossRefGoogle Scholar
  50. Ferretti G., Bacchetti T., Marotti E. and Curatola G. 2003 Effect of homocysteinylation on human high-density lipoproteins: a correlation with paraoxonase activity. Metabolism 52, 146–151.PubMedCrossRefGoogle Scholar
  51. Fire A., Kostas S., Montgomery M., Timmons L., Xu S., Tabara H. et al. 2013 Genetic inhibition by double-stranded RNA. US Patent No. 20,130,029,425.Google Scholar
  52. Flaskos J. 2012 The developmental neurotoxicity of organophosphorus insecticides: a direct role for the oxon metabolites. Toxicol. Lett. 209, 86–93.PubMedCrossRefGoogle Scholar
  53. Foxenberg R. J., McGarrigle B. P., Knaak J. B., Kostyniak P. J. and Olson J. R. 2007 Human hepatic cytochrome p450-specific metabolism of parathion and chlorpyrifos. Drug Metab. Dispos. 35, 189–193.PubMedCrossRefGoogle Scholar
  54. Fuhrman B., Nitzan O., Karry R., Volkova N., Dumler I. and Aviram M. 2007 Urokinase plasminogen activator (uPA) stimulates cholesterol biosynthesis in macrophages through activation of SREBP-1 in a PI3-kinase and MEK-dependent manner. Atherosclerosis 195, e108–e116.PubMedCrossRefGoogle Scholar
  55. Fujioka K. and Casida J. E. 2007 Glutathione s-transferase conjugation of organophosphorus pesticides yields s-phospho-, s-aryl-, and s-alkylglutathione derivatives. Chem. Res. Toxicol. 20, 1211–1217.PubMedCrossRefGoogle Scholar
  56. George J., Byth K. and Farrell G. C. 1995 Age but not gender selectively affects expression of individual cytochrome P450 proteins in human liver. Biochem. Pharmacol. 50, 727–730.PubMedCrossRefGoogle Scholar
  57. Gómez-Martín A., Hernández A. F., Martínez-González L. J., González-Alzaga B., Rodríguez-Barranco M., López-Flores I. et al. 2015 Polymorphisms of pesticide-metabolizing genes in children living in intensive farming communities. Chemosphere 139, 534–540.PubMedCrossRefGoogle Scholar
  58. Gonzalez F. J., Peters J. M. and Cattley R. C. 1998 Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome proliferator-activator receptor α. J. Natl. Cancer Inst. 90, 1702–1709.PubMedCrossRefGoogle Scholar
  59. Gonzalvo M. C., Gil F., Hernández A. F., Villanueva E. and Pla A. 1997 Inhibition of paraoxonase activity in human liver microsomes by exposure to EDTA, metals and mercurials. Chem. Biol. Interact. 105, 169–179.PubMedCrossRefGoogle Scholar
  60. Guengerich F. P. 1993 Cytochrome p450 enzymes. Am. Sci. 81, 440–447.Google Scholar
  61. Hankinson O. 1995 The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35, 307–340.PubMedCrossRefGoogle Scholar
  62. Harel M., Aharoni A., Gaidukov L., Brumshtein B., Khersonsky O., Meged R. et al. 2004 Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat. Struct. Mol. Biol. 11, 412–419.PubMedCrossRefGoogle Scholar
  63. Hassett C., Richter R. J., Humbert R., Chapline C., Crabb J. W., Omiecinski C. J. et al. 1991 Characterization of DNA clones encoding rabbit and human serum paraoxonase: the mature protein retains its signal sequence. Biochemistry 30, 10141–10149.PubMedCrossRefGoogle Scholar
  64. Hazleton L. 1955 Pesticide toxicity, review of current knowledge of toxicity of cholinesterase inhibitor insecticides. J. Agricult. Food Chem. 3, 312–319.CrossRefGoogle Scholar
  65. Hedrick C. C., Hassan K., Hough G. P., Yoo J., Simzar S., Quinto C. R. et al. 2000 Short-term feeding of atherogenic diet to mice results in reduction of HDL and paraoxonase that may be mediated by an immune mechanism. Arterioscler. Thromb. Vasc. Biol. 20, 1946–1952.PubMedCrossRefGoogle Scholar
  66. Hernández A. F., Gil F., Lacasaña M., Rodríguez-Barranco M., Gómez-Martin A., Lozano D. et al. 2013a Modulation of the endogenous antioxidants paraoxonase-1 and urate by pesticide exposure and genetic variants of xenobiotic-metabolizing enzymes. Food Chem. Toxicol. 61, 164–170.Google Scholar
  67. Hernández A. F., Parrón T., Tsatsakis A. M., Requena M., Alarcón R. and López-Guarnido O 2013b Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307, 136–145.Google Scholar
  68. Hernández A. F., Gonzalvo M. C., Gil F., Villanueva E. and Pla A. 1997 Divergent effects of classical inducers on rat plasma and microsomial fraction paraoxonase and arylesterase. Environ. Toxicol. Pharmacol. 3, 83–86.PubMedCrossRefGoogle Scholar
  69. Hodgson E. 2012 Biotransformation of individual pesticides: some examples. In Pesticide biotransformation and disposition, Chap. 9, 3rd edition, pp. 195–207, Academic Press, Elsevier Oxford, UK.Google Scholar
  70. Hodgson E. and Rose R. L. 2005 Human metabolism and metabolic interactions of deployment-related chemicals. Drug Metab. Rev. 37, 1–39.PubMedCrossRefGoogle Scholar
  71. Hodgson E. and Rose R. L. 2007 The importance of cytochrome p450 2b6 in the human metabolism of environmental chemicals. Pharmacol. Ther. 113, 420–428.PubMedCrossRefGoogle Scholar
  72. Hodgson E. and Rose R. L. 2006 Organophosphorus chemicals: potent inhibitors of the human metabolism of steroid hormones and xenobiotics. Drug Metab. Rev. 38, 149–162.PubMedCrossRefGoogle Scholar
  73. Humbert R., Adler D. A., Disteche C. M., Hassett C., Omiecinski C. J. and Furlong C. E. 1993 The molecular basis of the human serum paraoxonase activity polymorphism. Nat. Genet. 3, 73–76.PubMedCrossRefGoogle Scholar
  74. James R. W., Leviev I. and Righetti A. 2000a Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation 101, 2252–2257.Google Scholar
  75. James R. W., Leviev I., Ruiz J., Passa P., Froguel P. and Garin M. C. 2000b Promoter polymorphism T(–107)C of the paraoxonase PON1 gene is a risk factor for coronary heart disease in type 2 diabetic patients. Diabetes 49, 1390–1393.Google Scholar
  76. Jarvik G. P., Rozek L. S., Brophy V. H., Hatsukami T. S., Richter R. J., Schellenberg G. D. et al. 2000 Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1192 or PON155 genotype. Arterioscler. Thromb. Vasc. Biol. 20, 2441–2447.PubMedCrossRefGoogle Scholar
  77. Jarvik G. P., Tsai N. T., McKinstry L. A., Wani R., Brophy V. H., Richter R. J. et al. 2002 Vitamin C and E intake is associated with increased paraoxonase activity. Arterioscler. Thromb. Vasc. Biol. 22, 1329–1333.PubMedCrossRefGoogle Scholar
  78. Kale B. 2013 Xanthine oxidase and paraoxonase-1 as new markers in the diagnosis and prognosis of organophosphorus pesticide poisoning. Int. J. Biol. Res. 1, 10–14.Google Scholar
  79. Kaliste-Korhonen E., Tuovinen K. and Hanninen O. 1998 Effects of phenobarbital and γ-naphtoflavone on activities of different rat esterases after paraoxon exposure. Gen. Pharmacol. 31, 307–312.PubMedCrossRefGoogle Scholar
  80. Kao Y., Donaghue K. C., Chan A., Bennetts B. H., Knight J. and Silink M. 2002 Paraoxonase gene cluster is a genetic marker for early microvascular complications in type 1 diabetes. Diabetic Med. 19, 212–215.PubMedCrossRefGoogle Scholar
  81. Kato S., Shields P. G., Caporaso N. E., Hoover R. N., Trump B. F. et al. 1992 Cytochrome P450IIE1 genetic polymorphisms, racial variation, and lung cancer risk. Cancer Res. 52, 6712–6715.PubMedGoogle Scholar
  82. Khateeb J., Kiyan Y., Aviram M., Tkachuk S., Dumler I. and Fuhrman B 2012 Urokinase-type plasminogen activator downregulates paraoxonase 1 expression in hepatocytes by stimulating peroxisome proliferator–activated receptor- γ. Nuclear Export. Arterioscler. Thromb. Vasc. Biol. 32, 449–458.PubMedCrossRefGoogle Scholar
  83. Kim J. H., Stansbury K. H., Walker N. J., Trush M. A., Strickland P. T. and Sutter T. R. 1998 Metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-diol by human cytochrome P450 1B1. Carcinogenesis 19, 1847–1853.PubMedCrossRefGoogle Scholar
  84. Kirbas A., Kirbas S., Cure M. C. and Tufekci A. 2013 Paraoxonase and arylesterase activity and total oxidative/anti-oxidative status in patients with idiopathic parkinson’s disease. J. Clin. Neurosci. 21, 451–455.PubMedCrossRefGoogle Scholar
  85. Kiss I., Orsós Z., Gombos K., Bogner B., Csejtei A. et al. 2007 Association between allelic polymorphisms of metabolizing enzymes (CYP 1A1, CYP 1A2, CYP 2E1, mEH) and occurrence of colorectal cancer in Hungary. Anticancer Res. 27, 2931–2937.PubMedGoogle Scholar
  86. Kolesnikova L. I., Bairova T. A., Pervushina O. A. and Grebenkina L. A. 2015 Association of (192) Q>R polymorphism of the paraoxonase gene with a lipid profile and components of lipid peroxidation and antioxidant protection in populations of Russians and Buryats from eastern Siberia. Genetika 51, 236–241.PubMedGoogle Scholar
  87. Košir R., Španinger K. and Rozman D. 2013 Circadian events in human diseases and in cytochrome p450-related drug metabolism and therapy. IUBMB Life 65, 487–496.PubMedCrossRefGoogle Scholar
  88. Koutros S., Berndt S. I., Barry K. H., Andreotti G., Hoppin J. A. and Sandler D. P. 2013 Genetic susceptibility loci, pesticide exposure and prostate cancer risk. PLoS One 8, e58195.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Küçükali C. I., Ulusoy C., Özkan Ö., Orhan N., Güleç H., Erdağ E. et al. 2015 Evaluation of paraoxonase 1 polymorphisms in patients with bipolar disorder. In Vivo 29, 103–108.PubMedGoogle Scholar
  90. Kudchodkar B. J., Lacko A. G., Dory L. and Fungwe T. V. 2000 Dietary fat modulates serum paraoxonase 1 activity in rats . J. Nutr. 130, 2427–2433.PubMedGoogle Scholar
  91. Lang T., Klein K., Fischer J., Nüssler A. K., Neuhaus P., Hofmann U. et al. 2001 Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenet. Genomics 11, 399–415.CrossRefGoogle Scholar
  92. Lee J. Y., Vinayagamoorthy N., Han K., Kwok S. K., Ju J. H. et al. 2016 Association of polymorphisms of cytochrome P450 2D6 with blood hydroxychloroquine levels in patients with systemic lupus erythematosus. Arthritis Rheum. 68, 184–190.CrossRefGoogle Scholar
  93. Leon D. J., Susce M. T., Pan R. -M., Koch W. H. and Wedlund P. J. 2005 Polymorphic variations in GSTM1, GSTT1, PgP, CYP2D6, CYP3A5, and dopamine D2 and D3 receptors and their association with tardive dyskinesia in severe mental illness. J. Clin. Psychopharm. 25, 448–456.CrossRefGoogle Scholar
  94. Leoni C., Buratti F. M. and Testai E. 2008 The participation of human hepatic p450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion. Toxicol. Appl. Pharmacol. 233, 343–352.PubMedCrossRefGoogle Scholar
  95. Li W. F., Costa L. G., Richter R. J., Hagen T., Shih D. M., Tward A. et al. 2000 Catalytic efficiency determines the in vivo efficacy of PON1 for detoxifying organophosphates. Pharmacogenetics 10, 1–13.CrossRefGoogle Scholar
  96. Liu C., Bednarska A. J., Sibly R. M., Murfitt R. C., Edwards P. and Thorbek P. 2013 Incorporating toxicokinetics into an individual-based model for more realistic pesticide exposure estimates: a case study of the wood mouse. Ecol. Model. 280, 30–39.CrossRefGoogle Scholar
  97. Liu Y. J., Huang P. L., Chang Y. F., Chen Y. H., Chiou Y. H., Xu Z. L. and Wong R. H. 2006 GSTP1 genetic polymorphism is associated with a higher risk of DNA damage in pesticide-exposed fruit growers. Cancer Epidemiol. Biomarkers Prevent. 15, 659–666.CrossRefGoogle Scholar
  98. Lurie G., Wilkens L. R., Thompson P. J., McDuffie K. E., Carney M. E., Terada K. Y. and Goodman M. T. 2008 Genetic polymorphisms in the Paraoxonase 1 gene and risk of ovarian epithelial carcinoma. Cancer Epidemiol. Biomarkers Prevent 17, 2070–2077.CrossRefGoogle Scholar
  99. Mackness M. I., Arrol S. and Durrington P. N. 1991 Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. 286, 152–154.PubMedCrossRefGoogle Scholar
  100. Mansour S. A. 2004 Pesticide exposure—Egyptian scene. Toxicology 198, 91–115.PubMedCrossRefGoogle Scholar
  101. Marchesani M., Hakkarainen A., Tucmainen T. P., Kaikkonen J., Pukkala E., Uimari P. et al. 2003 New paraoxonase 1 polymorphism S102V and the risk of protate cancer in Finnish men. J. Natl. Cancer Inst. 95, 812–818.PubMedCrossRefGoogle Scholar
  102. Mazur A. 1946 An enzyme in animal tissues capable of hydrolyzing the phosphorus-flourene bond of alkyl fluorophosphates. J. Biol. Chem. 164, 271–289.PubMedGoogle Scholar
  103. Mercey G., Verdelet T., Renou J., Kliachyna M., Baati R., Nachon F. et al. 2012 Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc. Chem. Res. 45, 756–766.PubMedCrossRefGoogle Scholar
  104. Meunier B., De Visser S. P. and Shaik S. 2004 Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 104, 3947–3980.PubMedCrossRefGoogle Scholar
  105. Michael M. D., Kilgore M. W., Morohashi K. and Simpson E. R. 1995 Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J. Biol. Chem. 270, 13561–13566.PubMedCrossRefGoogle Scholar
  106. Mileson B. E., Chambers J. E., Chen W. L., Dettbarn W., Ehrich M., Eldefrawi A. T. et al. 1998 Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol. Sci. 41, 8–20.PubMedGoogle Scholar
  107. Mochizuki H., Scherer S. W., Xi T., Nickle D. C., Majer M., Huizenga J. J. et al. 1998 Human pon2 gene at 7q21.3: Cloning., multiple mrna forms, and missense polymorphisms in the coding sequence. Gene 213, 149–157.PubMedCrossRefGoogle Scholar
  108. Mohapatra P. and Pattanaik S. 2013 Origin, evolution and diversity of phosphotriesterases—an organophosphate degrading enzyme. An International Quarterly. J. Exp. Biol. 3, 123–132.Google Scholar
  109. Mostafalou S. and Abdollahi M. 2012 Concerns of environmental persistence of pesticides and human chronic diseases. Clin. Exp. Pharmacol. Physiol. S5, e002.Google Scholar
  110. Muñoz-Quezada M. T., Lucero B. A., Barr D. B., Steenland K., Levy K., Ryan P. B. et al. 2013 Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review. Neurotoxicology 39, 158–168.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Murata M., Watanabe M., Yamanaka M., Kubota Y., Ito H. et al. 2001 Genetic polymorphisms in cytochrome P450 (CYP) 1A1, CYP1A2, CYP2E1, glutathione S-transferase (GST) M1 and GSTT1 and susceptibility to prostate cancer in the Japanese population. Cancer Lett. 165, 171–177.PubMedCrossRefGoogle Scholar
  112. Murray M. I. C. H. A. E. L. 1999 Mechanisms and significance of inhibitory drug interactions involving cytochrome P450 enzymes (review). Int. J. Mol. Med. 3, 227–265.PubMedGoogle Scholar
  113. Nassar A. F. (ed.) 2010 Biotransformation and metabolite elucidation of xenobiotics: characterization and identification, pp. 200–290. John Wiley, New York, USA.Google Scholar
  114. Ng C. J., Wadleigh D. J., Gangopadhyay A., Hama S., Grijalva V. R., Navab M. et al. 2001 Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J. Biol. Chem. 276, 44444–44449.PubMedCrossRefGoogle Scholar
  115. Nishio E. and Watanabe Y. 1997 Cigarette smoke extract inhibits plasma paraoxonase activity by modification of the enzyme’s free thiols. Biochem. Biophys. Res. Commun. 236, 289–293.PubMedCrossRefGoogle Scholar
  116. Obare S. O., De C., Guo W., Haywood T. L., Samuels T. A., Adams C. P. et al. 2010 Fluorescent chemosensors for toxic organophosphorus pesticides: a review. Sensors 10, 7018–7043.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Otocka-Kmiecik A. and Orłowska-Majdak M 2013 The role of genetic (PON1 polymorphism) and environmental factors, especially physical activity, in antioxidant function of paraoxonase. Postepy. Hig. Med. Dosw. 63, 668–677.Google Scholar
  118. Paine M. F., Hart H. L., Ludington S. S., Haining R. L., Rettie A. E. and Zeldin D. C. 2006 The human intestinal cytochrome P450 “PIE”. Drug Metab. Dispos. 34, 880–886.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Parrón T., Requena M., Hernández A. F. and Alarcón R. 2011 Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol. Appl. Pharmacol. 256, 379–385.PubMedCrossRefGoogle Scholar
  120. Parul G., Kapil G., Surjit S., Ashish B., Navneet S., Gill K. D. et al. 2012 Role of paraoxonases in detoxification of organophosphates. JARBS 4, 320–325.Google Scholar
  121. Pei L., Petrikovics I. and Way J. 1995 Antagonism of the lethal effects of paraoxon by carrier erythrocytes containing phosphotriesterase. Toxicol. Sci. 28, 209–214.CrossRefGoogle Scholar
  122. Petry C. J., Ong K. K., Michelmore K. F., Artigas S., Wingate D. L. et al. 2005 Association of aromatase (CYP 19) gene variation with features of hyperandrogenism in two populations of young women. Hum. Reprod. 20, 1837–1843.PubMedCrossRefGoogle Scholar
  123. Poet T. S., Wu H., Kousba A. A. and Timchalk C. 2003 In vitro rat hepatic and intestinal metabolism of the organophosphate pesticides chlorpyrifos and diazinon. Toxicol. Sci. 72, 193–200.PubMedCrossRefGoogle Scholar
  124. Pope C., Karanth S. and Liu J. 2005 Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environ. Toxicol. Pharmacol. 19, 433–446.PubMedCrossRefGoogle Scholar
  125. Primo-Parmo S. L., Sorenson R. C., Teiber J. and Du B. N. L. 1996 The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33, 498–507.PubMedCrossRefGoogle Scholar
  126. Ragnarsdottir K. V. 2000 Environmental fate and toxicology of organophosphate pesticides. J. Geol. Soc. 157, 859–876.CrossRefGoogle Scholar
  127. Reffstrup T. K., Larsen J. C. and Meyer O. 2010 Risk assessment of mixtures of pesticides. Current approaches and future strategies. Regul. Toxicol. Pharmacol. 56, 174–192.PubMedCrossRefGoogle Scholar
  128. Richard S. A., Frank E. A. and D’Souza C. J 2013 Correlation between cholinesterase and paraoxonase 1 activities: case series of pesticide poisoning subjects. BioImpacts 3, 119–122.PubMedPubMedCentralGoogle Scholar
  129. Rodrigo L., Hernández A. F., Lopez-Caballero J. J., Gil F. and Pla A. 2001 Immunohistochemical evidence for the expression and induction of paraoxonase in rat liver, kidney, lung and brain tissue. Implications for its physiological role. Chem. Biol. Interact. 137, 123–137.PubMedCrossRefGoogle Scholar
  130. Roman L. J., Palmer C. N. A., Clark J. E., Muerhoff A. S., Griffin K. J., Johnson E. F. et al. 1993 Expression of rabbit cytochromes P4504A which catalyze the ω-hydroxylation of arachidonic acid, fatty acids, and prostaglandins. Arch. Biochem. Biophys. 307, 57–65.PubMedCrossRefGoogle Scholar
  131. Rose R., Tang J., Choi J., Cao Y., Usmani A., Cherrington N. et al. 2005 Pesticide metabolism in humans, including polymorphisms. Scand. J. Work Environ. Health 31, 156–163.PubMedGoogle Scholar
  132. Rosenblat M., Elias A., Volkova N. and Aviram M. 2013 Monocyte-macrophage membrane possesses free radicals scavenging activity: stimulation by polyphenols or by paraoxonase 1 (PON1). Free Radic. Res. 47, 257–267.PubMedCrossRefGoogle Scholar
  133. Ross S. M., McManus I., Harrison V. and Mason O. 2013 Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Crit. Rev. Toxicol. 43, 21–44.PubMedCrossRefGoogle Scholar
  134. Rydberg P. 2012 Theoretical study of the cytochrome p450 mediated metabolism of phosphorodithioate pesticides. J. Chem. Theory Comput. 8, 2706–2712.PubMedCrossRefGoogle Scholar
  135. Saadi H. S. and Abdollahi M. 2012 The importance of pesticides effects on human reproduction in farmers. Int. J. Pharm. 8, 467–469.CrossRefGoogle Scholar
  136. Samer C. F., Lorenzini K. I., Rollason V., Daali Y. and Desmeules J. A. 2013 Applications of CYP450 testing in the clinical setting. Mol. Diagn. Ther. 17, 165–184.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sams C., Mason H. J. and Rawbone R. 2000 Evidence for the activation of organophosphate pesticides by cytochromes P450 3A4 and 2D6 in human liver microsomes. Toxicol. Lett. 116, 217–221.PubMedCrossRefGoogle Scholar
  138. Sanghera D. K., Aston C. E., Saha N. and Kamboh M. I. 1998 DNA polymorphisms in two paraoxonase genes (PON1 and PON2) are associated with the risk of coronary heart disease. Am. J. Hum. Genet. 62, 36–44.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Schmucker D. L., Woodhouse K. W., Wang R. K., Wynne H., James O. F. and Kremers P. 1990 Effects of age and gender on in vitro properties of human liver. Clin. Pharmacol. Ther. 48, 365–374.PubMedCrossRefGoogle Scholar
  140. Sevior D. K., Pelkonen O. and Ahokas J. T. 2012 Hepatocytes: the powerhouse of biotransformation. Int. J. Biochem. Cell Biol. 44, 257–261.PubMedCrossRefGoogle Scholar
  141. Shenhar-Tsarfaty S., Waiskopf N., Ofek K., Shopin L., Usher S., Berliner S. et al. 2013 Atherosclerosis and arteriosclerosis parameters in stroke patients associate with paraoxonase polymorphism and esterase activities. Eur. J. Neurol. 20, 891–898.PubMedCrossRefGoogle Scholar
  142. Shi X., Dick R. A., Ford K. A. and Casida J. E. 2009 Enzymes and inhibitors in neonicotinoid insecticide metabolism. J. Agricult. Food Chem. 57, 4861–4866.CrossRefGoogle Scholar
  143. Shih D. M., Gu L., Hama S., Xia Y. R., Navab M., Fogelman A. M. et al. 1996 Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model. J. Clin. Invest. 97, 1630–1639.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Singh A. K., Tiwari M. N., Upadhyay G., Patel D. K., Singh D., Prakash O. et al. 2012 Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol. Aging 33, 404–415.PubMedCrossRefGoogle Scholar
  145. Singh S., Kumar V., Singh P., Thakur S., Banerjee B. D., Rautela R. S. et al. 2011 Genetic polymorphisms of GSTM1, GSTT1 and GSTP1 and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides. Mutat. Res. Genet. Tox. 725, 36–42.CrossRefGoogle Scholar
  146. Smutny T., Mani S. and Pavek P. 2013 Post-translational and post-transcriptional modifications of pregnane X receptor PXR in regulation of the cytochrome P450 superfamily. Curr. Drug. Metab. 14, 1059–1069.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sotaniemi E. A., Arranto A. J., Pelkonen O. and Pasanen M. 1997 Age and cytochrome P450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions. Clin. Pharmacol. Ther. 61, 331–339.PubMedCrossRefGoogle Scholar
  148. Sözmen B., Peker S., Kaya Ü., Erkan M. and Sözmen E. Y. 2007 Markers of long-term exposure to organophosphorus pesticides in farmers who work in viniculture and tobacco production in turkey. Toxicol. Mech. Meth. 17, 379–384.CrossRefGoogle Scholar
  149. Tang J., Cao Y., Rose R. L., Brimfield A. A., Dai D., Goldstein J. A. et al. 2001 Metabolism of chlorpyrifos by human cytochrome P450 isoforms and human, mouse, and rat liver microsomes. Drug Metab. Dispos. 29, 1201–1204.PubMedGoogle Scholar
  150. Tang J., Cao Y., Rose R. L. and Hodgson E. 2002 In vitro metabolism of carbaryl by human cytochrome P450 and its inhibition by chlorpyrifos. Chem. Biol. Interact. 141, 229–241.PubMedCrossRefGoogle Scholar
  151. Tavilani H., Fattahi A., Esfahani M., Khodadadi I., Karimi J., Bahrayni E. et al. 2014 Genotype and phenotype frequencies of paraoxonase 1 in fertile and infertile men. Syst. Biol. Reprod. Med. 60, 361–366.PubMedCrossRefGoogle Scholar
  152. Timbrell J. A. and Marrs T. C. 2009 Biotransformation of xenobiotics. General, Applied and Systems Toxicology. John Wiley, New York, USA.Google Scholar
  153. Toptaş B., Kurt Ö., Aydoğan H. Y., Yaylim I., Zeybek Ü., Can A. et al. 2013 Investigation of the common paraoxonase 1 variants with paraoxonase activity on bone fragility in Turkish patients. Mol. Biol. Rep. 40, 6519–6524.PubMedCrossRefGoogle Scholar
  154. Tsatsakis A., Zafiropoulos A., Tzatzarakis M., Tzanakakis G. and Kafatos A. 2009 Relation of PON1 and CYP1A1 genetic polymorphisms to clinical findings in a cross-sectional study of a greek rural population professionally exposed to pesticides. Toxicol. Lett. 186, 66–72.PubMedCrossRefGoogle Scholar
  155. Uematsu F., Ikawa S., Kikuchi H., Sagami I., Kanamaru R. et al. 1994 Restriction fragment length polymorphism of the human CYP 2E1 (cytochrome P450IIE1) gene and susceptibility to lung cancer: possible relevance to low smoking exposure. Pharmacogenet. Genomics 4, 58–63.CrossRefGoogle Scholar
  156. Usmani K. A., Cho T. M., Rose R. L. and Hodgson E. 2006 Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals. Drug Metab. Dispos. 34, 1606–1614.PubMedCrossRefGoogle Scholar
  157. Vecchini F., Mace K., Magdalou J., Mahe Y., Bernard B. A. and Shroot B. 1995 Constitutive and inducible expression of drug metabolizing enzymes in cultured human keratinocytes. Br. J. Dermatol. 132, 14–21.PubMedCrossRefGoogle Scholar
  158. Victoria L. S., Carmen R., Alexandre L. P., Michael J. T. and Eugenia E. C. 2006 Association of polymorphisms in the paraoxonase 1 gene with breast cancer incidence in the CPS-II nutrition cohort. Cancer Epidemiol. Biomarkers Prev. 15, 1226–1228.CrossRefGoogle Scholar
  159. Wallace A. J., Sutherland W. H. F., Mann J. I. and Williams S. M. 2001 The effect of meals rich in thermally stressed olive oil and safflower oils on postprandial serum paraoxonase activity in patients with diabetes. Eur. J. Clin. Nutr. 55, 951–958.PubMedCrossRefGoogle Scholar
  160. Wang X., Fan Z., Huang J., Su S., Yu Q., Zhao J. et al. 2003 Extensive association analysis between polymorphisms of PON gene cluster with coronary heart disease in Chinese Han population. Arterioscler. Thromb. Vasc. Biol. 23, 328–334.PubMedCrossRefGoogle Scholar
  161. Wang Z., Zhang Y., Kong X., Li S., Hu Y., Wang R. et al. 2013 Association of a polymorphism in PON-1 gene with steroid-induced osteonecrosis of femoral head in Chinese Han population. Diagn. Pathol. 8, 186.PubMedPubMedCentralGoogle Scholar
  162. Wanner R., Brommer S., Czarnetzki B. M. and Rosenbach T. 1995 The differentiation-related upregulation of aryl hydrocarbon receptor transcript levels is suppressed by retinoic acid. Biochem. Biophys. Res. Commun. 209, 706–711.PubMedCrossRefGoogle Scholar
  163. Warrington J. S., Greenblatt D. J. and von Moltke L. L. 2004 Age-related differences in CYP3A expression and activity in the rat liver, intestine, and kidney. J. Pharmacol. Exp. Ther. 309, 720–729.PubMedCrossRefGoogle Scholar
  164. Wauthier V., Verbeeck R. K. and Calderon P. B. 2004 Age-related changes in the protein and mRNA levels of CYP2E1 and CYP3A isoforms as well as in their hepatic activities in Wistar rats. What role for oxidative stress? Arch. Toxicol. 78, 131–138.PubMedCrossRefGoogle Scholar
  165. Wilkinson G. R. 2005 Drug metabolism and variability among patients in drug response. N. Engl. J. Med. 352, 2211–2221.PubMedCrossRefGoogle Scholar
  166. Yang Y. N., Wang X. L., Ma Y. T., Xie X., Fu Z. Y. et al. 2010 Association of interaction between smoking and CYP 2C19*3 polymorphism with coronary artery disease in a Uighur population. Clin. Appl. Thromb. Hemost. 16, 579–583.PubMedCrossRefGoogle Scholar
  167. You T., Lv J. and Zhou L. 2013 Pon1 q192R and L55M polymorphisms and organophosphate toxicity risk: a meta-analysis. DNA Cell Biol. 32, 252–259.PubMedCrossRefGoogle Scholar
  168. Zanger U. M., Turpeinen M., Klein K. and Schwab M. 2008 Functional pharmacogenetics/genomics of human cytochromes p450 involved in drug biotransformation. Anal. Bioanal. Chem. 392, 1093–1108.PubMedCrossRefGoogle Scholar
  169. Zhang Y., Liu H., He J., Xu K., Bai H., Wang Y. et al. 2015 Lactonase activity and status of paraoxonase 1 in Chinese women with polycystic ovarian syndrome. Eur. J. Endocrinol. 172, 391–402.PubMedCrossRefGoogle Scholar
  170. Zhuang X. M., Wei X., Tan Y., Xiao W. B., Yang H. Y., Xie J. W. et al. 2014 Contribution of carboxylesterase and cytochrome P450 to the bioactivation and detoxification of isocarbophos and its enantiomers in human liver microsomes. Toxicol. Sci. 140, 40–48.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Centre for Environmental Science and TechnologyCentral University of PunjabBathindaIndia
  2. 2.Centre for Human Genetics and Molecular MedicineCentral University of PunjabBathindaIndia

Personalised recommendations