Bio-mineral needle fiber calcite (NFC) in Tunisian Pleistocene calcretes (topology and crystallization)

Abstract

The microfacies of Pleistocene calcareous crust in Tunisia revealed the presence of diverse aspects of acicular crystallizations in a porous system. These crystallizations are in the shape of branched filaments, mono or polycrystalline rods which are either smooth or serrated (calcite), and serrated edge needle (calcium oxalate). The genesis of these acicular structures seems to be directly or indirectly linked to the organic activity. In fact, the facies are tied to the biological activity or biochemical interactions, which occur between living organisms and the mineral (calcite), triggering a succession of precipitation and dissolution reactions. These reactions, which are characteristic of vadose environments, have actively contributed to the endurance of calcareous crusts due to premature or delayed diagenesis. The acicular calcite, found in the Tunisian Pleistocene calcretes, reflects regional climates that influence the form and mineralogy of needle fiber calcite.

Research Highlights

  • Diverse aspects of acicular crystallizations in the microfacies of Pleistocene calcareous crusts investigated.

  • The needle fiber calcite has different origins, which may be biogenic, physicochemical or organic.

  • The form and mineralogy of the needle fiber calcite are affected by the environment and climate change.

  • The lithogenesis of the crusts is influenced by the redistributions and the organizations of the needle fiber calcite.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Achyuthan H, Quade J, Roe L and Placzek C 2007 Stable isotopic composition of pedogenic carbonates from the eastern margin of the Thar Desert, Rajasthan, India; Quat. Int. 162 50–60, https://doi.org/10.1016/j.quaint.2006.10.031.

    Article  Google Scholar 

  2. Achyuthan H, Flora O, Braida M, Shankar N and Stenni B 2010 Radiocarbon ages of pedogenic carbonate nodules from Coimbatore region, Tamil Nadu; J. Geol. Soc. India 75(6) 791–798, https://doi.org/10.1007/s12594-010-0072-2.

    Article  Google Scholar 

  3. Alonso-Zarza A M 2003 Paleoenvironmental significance of palustrine carbonates and calcretes in the geological record; Earth-Sci. Rev. 60 261–298, https://doi.org/10.1016/S0012-8252(02)00106-X.

    Article  Google Scholar 

  4. Alonso-Zarza A M and Jones B J 2007 Root calcrete formation on Quaternary karstic surfaces of Grand Cayman; Geol. Acta 5 77–88, https://doi.org/10.1344/10.1344/105.000000311.

    Article  Google Scholar 

  5. Alonso-Zarza A M and Wright V P 2010 Calcretes; Dev. Sedim. 61 225–267, https://doi.org/10.1016/S0070-4571(09)06105-6.

    Article  Google Scholar 

  6. Arakel A V 1982 Genesis of calcrete in Quaternary soil profiles, Hutt and Leeman Lagoons, Western Australia; J. Sedim. Petrol. 52(1) 109–125, https://doi.org/10.1306/212F7EF0-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  7. Bajnóczi B and Kovács-Kis V 2006 Origin of pedogenic needle fiber calcite revealed by micromorphology and stable isotope composition – a case study of a Quaternary paleosols from Hungary; Chemie der Erde 66 203–212, https://doi.org/10.1016/j.chemer.2005.11.002.

    Article  Google Scholar 

  8. Barta G 2011 Secondary carbonates in loess-paleosoil sequences: A general review; Cent. Eur. J. Geosci. 3(2) 129–146, https://doi.org/10.2478/s13533-011-0013-7.

    Article  Google Scholar 

  9. Barta G 2014 Paleoenvironmental reconstruction based on the morphology and distribution of secondary carbonates of the loess-paleosol sequence at Sütto, Hungary; Quat. Int. 319 64–75, https://doi.org/10.2478/s13533-011-0013-7.

    Article  Google Scholar 

  10. Bindschedler S, Cailleau G, Braissant O, Millière L, Job D and Verrecchia E P 2014 Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: Purely physicochemical or biogenic processes?; Biogeosci. 11(10) 2809–2825, https://doi.org/10.5194/bg-11-2809-2014.

    Article  Google Scholar 

  11. Blancaneaux P, Houmane B and Gallali T 1987 Les différents faciès d’accumulations calcaires dans la région orientale de la péninsule du Cap-Bon (Tunisie septentrionale); Cah. ORSTOM Sér. Pédol. 23(4) 253–273.

    Google Scholar 

  12. Boquet E, Bordonat A and Ramos-Cormenzana A 1973 Production of calcite crystals by soil bacteria is a general phenomenon; Nature 246 527–529.

    Article  Google Scholar 

  13. Braithwaite C J R 1975 Petrology of palaeosols and other terrestrial sediments on Aldabra, Western Indian Ocean; Phil. Trans. Roy. Soc. London B 273(921) 1–32, https://doi.org/10.1098/rstb.1975.0101.

    Article  Google Scholar 

  14. Brewer R 1976 Fabric and mineral analysis of soils; Huntingdon, New York, Krieger.

    Google Scholar 

  15. Burollet P F 1956 Contribution à l'étude stratigraphique de la Tunisie centrale; Ann. Mines Géol. 18 350.

    Google Scholar 

  16. Bourgou M 1991 Les accumulations dunaires de la péninsule du Cap Bon (Tunisie), étude géomorphologique; Pub. Univ. Tunis, 2ème série, Géographie, Vol. XXVI, 198p.

  17. Bullock P, Fedoroff N, Jonderius A, Stoops G and Tursina T 1985 Handbook for soil thin section description; Waine Research Publication, 152p.

  18. Cailleau G 2005 Cycle de carbone et biominéralisation carbonatée en milieu continental: LA diagenèse des phases Oxalate-Carbonate; PhD dissertation. Univ. Neuchtel, Suisse.

  19. Callot G, Guyon A and Mousain D 1985a Inter-relations entre les aiguilles de calcite et hyphes mycéliens; Agronomie 5(3) 209–216.

    Article  Google Scholar 

  20. Callot G, Mousain D and Plassard C 1985b Concentrations de carbonate de calcium sur les parois des hyphes mycéliens; Agronomie 5 143–150.

    Article  Google Scholar 

  21. Calvet F and Julia R 1983 Pisoids in the caliche profiles of Tarragona (N.E. Spain); In: Coated Grains (ed.) Peryt T, Berlin, Springer-Verlag, pp. 456–473.

  22. Cerling T E 1984 Stable isotope composition of modern soil carbonate and its relationship to climate; Earth Planet. Sci. Lett 71(2) 229–240, https://doi.org/10.1016/0012-821X(84)90089-X.

    Article  Google Scholar 

  23. Chafetz H S, Wilkinson B H and Love K M 1985 Morphology and composition of non-marine carbonate cements in near-surface setting; In: Carbonate cements (eds) Schneidermann N and Harris P M, SEPM Spec. Publ. 36 337–349.

  24. Coniglio M and Harrison R S 1983 Holocene and Pleistocene caliche from Big Pine Key, Florida; Bull. Can. Pet. Geol. 31(1) 3–13.

    Google Scholar 

  25. Coudé-Gaussen G, Olive P and Rognon P 1983 Datation de dépôts loessiques et variations climatiques à la bordure nord du Sahara algéro-tunisien; Rev. Géol. dynam. Géogr. Phys. Paris 24(1) 61–73.

    Google Scholar 

  26. Esteban M and Klappa C F 1983 Subaerial exposure environment; In: Carbonate depositional environments (eds) Scholle P A, Bebout D G and Moore C H, Am. Ass. Pet. Geol. Memoir. 33 1–54.

  27. Gile L H 1961 A classification of ca horizons in soils of a desert region, Dona Ana County, New Mexico; Soil Sci. Soc. Am. J. 25(1) 52–61, https://doi.org/10.2136/sssaj1961.03615995002500010024x.

    Article  Google Scholar 

  28. Gile L H, Peterson F F and Grossman R B 1966 Morphological and genetic sequences of carbonate accumulation in desert soils; Soil Sci. 101(5) 347–360.

    Article  Google Scholar 

  29. Gocke M, Pustovoytov K and Kuzyakov Y 2012 Pedogenic carbonate formation: Recrystallization versus migration – Process rates and periods assessed by 14C labeling; Global Biogeochem. Cy. 26(1), https://doi.org/10.1029/2010GB003871.

  30. Harrison R S 1977 Caliches profiles: Indicator of near surface subaerial diagenesis, Barbados, West Indies; Bull. Can. Pet. Geol. 25(1) 123–173.

    Google Scholar 

  31. James N P 1972 Holocene and Pleistocene calcareous crust (caliche) profiles: Criteria for subaerial exposure; J. Sedim. Res. 42(4).

  32. Jones B and Kahle C F 1993 Morphology, relationship, and origin of fiber and dendrite calcite crystals; J. Sedim. Res. 63(6) 1018–1031, https://doi.org/10.1306/D4267C85-2B26-11D7-8648000102C1865D.

    Article  Google Scholar 

  33. Jones B and Peng X 2014 Abiogenic growth of needle-fiber calcite in spring towers at Shiqiang, Yunnan Province, China; J. Sedim. Res. 84(11) 1021–1040, https://doi.org/10.2110/jsr.2014.82.

    Article  Google Scholar 

  34. Millot G, Nahon D, Paquet H, Ruellan A and Tardy Y 1977 L'épigénie calcaire des roches silicatées dans les encroûtements carbonatés en pays subarides. AntiAtlas, Maroc; Sci. Géol. Bull.Memoir 30(3) 129–152.

  35. Millière L, Hasinger O, Bindschedler S, Cailleau C, Spangenberg J E and Verrecchia E P 2011 Stable carbon and oxygen isotope signatures of pedogenic needle fibre calcite; Geoderma 161 74–87, https://doi.org/10.1016/j.geoderma.2010.12.009.

    Article  Google Scholar 

  36. Millière L, Gussone N, Moritz T, Bindschedler S and Verrecchia E P 2019 Origin of strontium and calcium in pedogenic needle fiber calcite (NFC); Chem. Geol. 524 329–344, https://doi.org/10.1016/j.chemgeo.2019.06.022.

    Article  Google Scholar 

  37. Netterberg F 1980 Geology of southern African calcretes: 1: Terminology, description, macrofeatures, and classification; S. Afr. J. Geol. 83(2) 255–283.

    Google Scholar 

  38. Netterberg F and Caiger J H 1983 A geotechnical classification of calcretes and other pedocretes; In: Residual Deposits: Surface Related Weathering Processes and Materials (ed.) Wilson R C L, Geol. Soc. Lond. Spec. Publ. 11 235–243, https://doi.org/10.1144/GSL.SP.1983.011.01.23.

  39. Philips S E and Self P G 1987 Morphology, crystallography and origin of needle fiber calcite in quaternary pedogenic calcretes of South Australia; Soil Res. 25(4) 429–444, https://doi.org/10.1071/SR9870429.

    Article  Google Scholar 

  40. Rabenhorst M C P and Wilding 1986 Pedogenesis of the Edwards Plateau, Texas: III. New model of petroclastic horizons; Soil Sci. Soc. Am. J. 50(3) 678–699.

  41. Regaya K 1983 Les accumulations calcaires dans les limons de Matmata de la région de Gabès en Tunisie; Sci. Géol. Bull. Memoir 37(4) 387–390.

    Google Scholar 

  42. Regaya K 1992 Les croûtes calcaires de Tunisie orientale aux environs de Sousse. Signification climatique et historique; Sci. Géol. Bull. Memoir. 45(2) 99–107.

  43. Regaya K 2000 L’interférence pédogenèse-sédimentogenèse dans les carbonates continentaux: Contribution à l’étude de la lithogenèse des calcretes et formations calcaires associées du Quaternaire de Tunisie; Thèse d’état es-Sciences. Univ. Tunis II, Tunisie.

  44. Regaya K, Bourgou M and Paquet H 2002 Les encroûtements calcaires de la Dorsale Tunisien (Piémonts occidentaux de Jebel Bargou). Conditions de formation et signification paléoenvironnementales; Afr. Geosci. Rev. 9(3) 211–224.

  45. Riche G, Rambaud D and Riera M 1982 Etude morphologique d’un encroutement calcaire, Région d’Irece, Bahia, Brésil; Cah. ORSTOM Sér. Pédol. 19 257–270.

    Google Scholar 

  46. Riding R 1977 Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll; Palaeontology 20 33–46.

    Google Scholar 

  47. Ruellan A 1971 Contribution à la connaissance des sols des régions méditerranéennes: les sols à profil calcaire différencié des plaines de la basse Moulouya (Maroc oriental). Thèse, Univ. Strasbourg. Mém. ORSTOM, Paris 54 302.

  48. Stoops G J 1976 On the nature of 'Lublinite' from Hollanta (Turkey); Am. Mineral. 61 172.

    Google Scholar 

  49. Talma A S and Netterberg F 1983 Stable isotope abundances in calcretes; Geol. Soc. London, Spec. Publ. 11 221–233.

    Article  Google Scholar 

  50. Truc G, Triat J M, Sassi S, Paquet H and Millot G 1985 Caractères généraux de l’épigénie carbonatée de surface, par altération météorique liée à la pédogenèse, et par altération sous couverture liée à la diagenèse; C. R. Acad. Sci. Paris 300 283–290.

    Google Scholar 

  51. Verges V, Madon M, Bruand A and Bocquier G 1982 Morphologie et cristallogenèse de monocristaux supergènes de calcite en aiguilles; Bull. Minéral. 105(4) 351–356.

    Article  Google Scholar 

  52. Verrecchia E P and Verrecchia K E 1994 Needle-fiber calcite: A critical review and proposed classification; J. Sedim. Res. 64 650–664, https://doi.org/10.1306/D4267E33-2B26-11D7-8648000102C1865D.

    Article  Google Scholar 

  53. Verrecchia E P, Braissant O and Cailleau G 2006 The oxalate-carbonate pathway in soil carbon storage: The role of fungi and oxalotrophic bacteria; In: Fungi in biogeochemical cycles (ed.) Gadd G M, Cambridge University Press, pp. 289–310, https://doi.org/10.1017/cbo9780511550522.013.

  54. Vogt T 1983 Types et genèse des croûtes calcaires (France méditerranéenne, Afrique du Nord); Thèse d’état es-Sciences. Univ. P. &; M. Curie, Paris VI, pp. 86–16.

  55. Villagran X S and Poch R M 2014 A new form of needle-fiber calcite produced by physical weathering of shells; Geoderma 213 173–177, https://doi.org/10.1016/j.geoderma.2013.08.015.

    Article  Google Scholar 

  56. Watts N L 1980 Quaternary pedogenic calcretes from the Kalahari (southern Africa): Mineralogy, genesis and diagenesis; Sedimentology 27(6) 661–686, https://doi.org/10.1111/j.1365-3091.1980.tb01654.x.

    Article  Google Scholar 

  57. Wright V P 1990 A micromorphological classification of fossil and recent calcic and petrocalcic microstructures; In: Soil Micromorphology: A basic and applied science developments in soil science (ed.) Douglas L A, Amsterdam, Elsevier, pp. 401–407, https://doi.org/10.1016/S0166-2481(08)70354-4.

  58. Wright V P, Platt N H and Wimbledon W A 1988 Biogenic laminated calcretes: Evidence of calcified root-mat horizons in paleosols; Sedimentology 35(4) 603–620, https://doi.org/10.1111/j.1365-3091.1988.tb01239.x.

    Article  Google Scholar 

  59. Wright V P and Tucker M E 1991 Calcretes; International Association of Sedimentologists Reprint Series, 352p.

  60. Zhou J and Chafetz H S 2009 A Biogenic caliches in Texas: The role of organisms and effect of climate; Sedim. Geol. 222 207–225, https://doi.org/10.1016/j.sedgeo.2009.09.003.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia. The authors are grateful to the reviewers for their critical suggestions and constructive comments. Prof. Dr Navin Juyal is thanked for editorial handling.

Author information

Affiliations

Authors

Contributions

All authors have made substantial contributions to the work reported in the manuscript. F Tlili and K Regaya: Fieldwork, analysis and interpretation of the data; F Tlili, A Ayari and K Regaya: Drafting the manuscript; and F Tlili and A Ayari: Critical revision.

Corresponding author

Correspondence to Faouzia Tlili.

Additional information

Communicated by Navin Juyal

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tlili, F., Ayari, A. & Regaya, K. Bio-mineral needle fiber calcite (NFC) in Tunisian Pleistocene calcretes (topology and crystallization). J Earth Syst Sci 130, 28 (2021). https://doi.org/10.1007/s12040-020-01528-4

Download citation

Keywords

  • Acicular calcite
  • calcareous crust
  • organic activity
  • climates