Phase petrographic, thermobarometric and petrochemical significance of Cretaceous mafic dykes along Nongchram Fault Zone of Swangkre–Rongmil area of Shillong plateau, NE India: Implications for genetic link to Kerguelen mantle plume

Abstract

The present study elucidates the phase petrographic and petrochemical signatures of a group of Cretaceous mafic dykes emplaced in the Precambrian gneissic basement complex in the western part of the Shillong plateau, NE India, in order to trace their petrological, geotectonic, geothermobarometric and oxybarometric status. The whole rock geochemistry discriminates the dykes as basaltic andesites and basaltic trachyandesites genetically related to each other and derived from common parent magma. The enrichment in LREE relative to HREE and HFSE, systematic Nb anomalies, moderate MREE to HREE fractionation suggests variable depths of melting of slightly enriched mantle source in the garnet stability field. As per geochemical modelling, the studied dykes are derived by 3–5% non-modal batch melting of garnet peridotite source at melting depth of ~65–80 km. The clinopyroxene thermobarometry reveals a temperature span of 1250–800°C and < 2 kb pressure of crystallization for the dykes. The oxygen fugacity (16.82–18.25) indicates extremely reducing conditions at the time of cooling. The very good correlation of petrochemical and phase chemical data with Kerguelen plume derived Rajmahal Group II basalt, Sylhet volcanics and some ODP (ocean drilling project) sites from Kerguelen basalts implicate a genetic link of the studied dykes with Kerguelen mantle plume. Finally, the present study deciphers subalkaline nature of the studied dyke rocks that have been generated by tholeiitic magmas probably in an anorogenic extensional environment. But we need more geochemical data especially good isotope geochronologic data to get a clear picture of the studied dyke.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Data sources: Frey et al. 1996, 2002; Neal et al. 2002; Storey et al. 1992. Data for Sylhat trap tholeiites (IST) are after Islam et al. (2014).

Figure 5

Data sources: 1136, 1138, 1141, and 1142 from Neal et al. (2002), 1137 from Ingle et al. (2002b), 747, 749 and 750 from Storey et al. (2003). (c) Primitive mantle normalized (Sun and McDonough 1989) multielement pattern for NFZMD. (d) Primitive mantle normalized (Sun and McDonough 1989) multielement pattern for Kerguelen plateau ODP sites.

Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Data sources: Frey et al. (1996, 2002); Neal et al. (2002); Storey et al. (1992); and Kent et al. (1997). Data for Sylhat trap tholeiites are after Ghatak and Basu (2011) and Islam et al. (2014).

Figure 13

Data sources: Frey et al. (1996, 2002); Neal et al. (2002); Storey et al. (1992); and Kent et al. (1997). Data for Sylhat trap tholeiites are after Ghatak and Basu (2011) and Islam et al. (2014). NFZMD samples show similar distribution to the En components of Kerguelen basalts as shown by Condie (2005).

Figure 14

Data sources: Frey et al. (1996, 2002); Neal et al. (2002); Storey et al. (1992); and Kent et al. (1997). Data for Sylhat trap tholeiites are after Ghatak and Basu (2011) and Islam et al. (2014). Tectonic discrimination diagrams (after Leterrier et al. 1982) based on the composition of clinopyroxene (calculated on the basis of 6 atoms of oxygen), for mafic dyke rocks from study area. (e) Ti vs. Al (total) plot show tholeiitic affinity for NFZMD. (f) Ti + Cr vs. Ca indicating extensional/anorogenic tectonic setting. (g) TiO2–Na2O–MnO Triangular diagram (after Nisbet and Pearce 1977) indicating OFB field. VAB: volcanic arc basalt; OFB: ocean floor basalt; WPT: within plate tholeiite; and WPA: within plate alkali basalt. (h) MgO–FeO–Al2O3 diagram (after Le Bas 1962) indicating rift related magmatism.

Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Data sources: Frey et al. (1996, 2002); Neal et al. (2002); and Storey et al. (1992). Data for Sylhat trap (IST) are after Islam et al. (2014).

References

  1. Acharyya S K, Mitra N D, Nandy D R 1986 Regional geology and tectonic setting of north east India and adjoining region; Geol. Surv. India 119 6–12.

    Google Scholar 

  2. Allegre C J and Minster J F 1978 Quantitative models of trace element behaviour in magmatic process; Earth Planet. Sci. Lett. 38 1–25.

    Google Scholar 

  3. Anderson A T 1968 Oxidation of the La Blanche Lake titaniferous magnetite deposit, Québec J. Geol. 76(4) 528–547.

    Google Scholar 

  4. Anderson D J and Lindsley D H 1985 New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. Abstract AGU 1985 Spring Meeting Eos Transactions; Am. Geophys. Union 66(18) 416.

    Google Scholar 

  5. Aoki K I and Shiba I 1973 Pyroxenes from Lherzolite Inclusions of Itinome–Gata, Japan; Lithos 6 41–51.

    Google Scholar 

  6. Arndt N 2003 Komatiites, kimberlites, and boninites; J. Geophys. Res. 108 1–11.

    Google Scholar 

  7. Baksi A K 1995 Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, Northeastern India; Chem. Geol. 121 73–90.

    Google Scholar 

  8. Baksi A K 2000 Search for a deep-mantle component in mafic lavas using Nb–Y–Zr plot; Canadian J. Earth Sci. 38 813–824.

    Google Scholar 

  9. Basu A R, Renne P R, Das Gupta D K, Teichman F and Poreda R J 1993 Early and late alkali igneous pulses and a high 3 He plume origin for the Deccan flood basalts; Science 261 902–906.

    Google Scholar 

  10. Berman R 1988 Internally consistent Thermodynamic data for minerals in the system Na2O–K2O–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2; J. Petrol. 29 445–522.

    Google Scholar 

  11. Bilham R and England P 2001 Plateau ‘pop-up’ in the great 1897 Assam Earthquake; Nature 410 806–809.

    Google Scholar 

  12. Bondre N R, Hart W K and Sheth H C 2006 Geology and geochemistry of the Sangamner mafic dike swarm, Western Deccan Volcanic Province, India: Implications for regional stratigraphy; J. Geol. 114 155–170.

    Google Scholar 

  13. Buslov M M, Safonova I Yu, Fedoseev G S, Reichow M, Davies C and Babin G A 2010 Permo-Triassic plume magmatism of the Kuznetsk Basin, Central Asia: Geology, geochronology and geochemistry; Russian Geol. Geophys. 51 901–916.

    Google Scholar 

  14. Carmichael I S E 1967 The iron–titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates; Contrib. Mineral. Petrol. 14(1) 36–64.

    Google Scholar 

  15. Chakrabarty R, Basu A R, Bandopadhyay P K and Zou H 2011 Age and origin of Chilka anorthosites, Eastern Ghats, India: Implications for massif anorthosites petrogenesis and breake up of Rodinia; In: Topics in Igneous Petrology (eds) Ray J S et al., Springer Science, 355–382.

    Google Scholar 

  16. Chottopadhyay N and Hashimi S 1984 The Sung Valley alkaline-ultramafic carbonatite complex, East Khasi Hills and Jaintia Hills district, Meghalaya; Rec. Geol. Surv. India 113(4) 23–24.

    Google Scholar 

  17. Coffin M F, Pringle M S, Duncan R A, Gladezenko T P, Storey M, Müller R D and Gahagan L A 2002 Kerguelen hotspot magma output since 130 Ma; J. Petrol. 43 1121–1139.

    Google Scholar 

  18. Condie K C 1981 Archaean Greenstone belts, Elsevier, Amsterdam, 434 p.

    Google Scholar 

  19. Condie K C 2005 High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos 79 491–504, https://doi.org/10.1016/j.lithos.2004.09.014.

    Article  Google Scholar 

  20. Condie C K, Bobrow D J and Card K D 1987 Geochemistry of Precambrian Mafic Dykes from the Southern Superior Province of the Canadian Shield; In: Mafic dyke swarms (eds) Halls H C and Fahring W F, Geol. Assoc. Can. Spec. Paper 34 95–108.

  21. Dasgupta S and Nandy D R 1982 Seismicity and tectonics of Meghalaya plateau, Northeast India; Proc. VII symp. On Earthquake Engineering, Roorkee 1 19–24.

    Google Scholar 

  22. Delaney P T, Pollard D D, Ziony J I and McKee E H 1986 Field relations between dikes and joints: Emplacement processes and paleostress analysis; J. Geophys. Res. 91 4920–4938.

  23. Devi N R and Sarma K P 2006 Tectonostratigraphic study of conglomerates of Shillong basin of Meghalaya, India; J. Geol. Soc. India 68 1100–1108.

    Google Scholar 

  24. Devi N R and Sarma K P 2010 Strain analysis and stratigraphic status of Nongkhya, Sumer and Mawmaram conglomerates of Shillong basin, Meghalaya, India; J. Earth Syst. Sci. 119(2) 161–174.

    Google Scholar 

  25. Devi N R 2018 An overview of geochemical significance of cretaceous mafic dykes in and around Nongchram Fault Zone of Shillong Plateau, NE India: Implications for genetic link to Kerguelen plume; Int. J. Curr. Trends Sci. Tech. 8(03) 20,181–20,199.

    Google Scholar 

  26. Duraiswami R A and Shaikh T N 2013 Geology and geochemistry of the saucer-shaped sill near Mahad, western Deccan Traps, India and its significance to the Flood Basalt Model 556. Bull. Volcanol. 75 1–18.

    Google Scholar 

  27. Dostal J and Durning M 1998 Geochemical constrains on origin and evolution of early mesozoic dikes in Atlantic Canada; Eur. J. Mineral. 10 79–93.

    Google Scholar 

  28. Ellam R 1992 Lithospheric thickness as a control on basalt geochemistry; Geology 20 153–156.

    Google Scholar 

  29. Ermenco N A, Negi B S, Nasianov M V, Seregin A M, Despande B G, Sengupta S N, Talukdar S N, Sastri V V, Sokaluv I P, Pavbukov A T, Dutta A K and Raju A T R 1969 Tectonic map of India–Principles of preparation; Bull. ONGC 6(1) 1–111.

    Google Scholar 

  30. Ernst R E, Buchan K L and Palmar H C 1995 Giant dyke swarms, characteristics, distribution and geotectonic applications; In: Physics and Chemistry of Dykes (eds) Baer G and Haemann A, A. A. Balkema, Rotterdam, pp. 3–21.

    Google Scholar 

  31. Eugster H P and Wones D R 1962 Stability relations of the ferruginous biotite, annite; J. Petrol. 3 82–125.

    Google Scholar 

  32. Evans P 1964 The tectonic framework of Assam; J. Geol. Soc. India 5 88–96.

    Google Scholar 

  33. Fitton J G, Saunders A D, Norry M J, Hardarson B S and Taylor R N 1997 Thermal and chemical structure of the Iceland plume; Earth Planet. Sci. Lett153 197–208.

    Google Scholar 

  34. Fodor R V and Vetter S K 1984 Riftzone magmatism: Petrology of basaltic rocks transitional from CFB to ORB, southeastern Brazil margin; Contrib. Mineral. Petrol88 307–321.

    Google Scholar 

  35. France L, Koepke J, Ildefonse B, Cichy S B and Deschamps F 2010 Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations; Contrib. Mineral. Petrol. 160 683–704.

    Google Scholar 

  36. French J E, Haeman L M, Chacko T and Srivastava R K 2008 1891–1883 Ma Southern Bastar–Cuddapah mafic igneous events, India: A newly recognized large igneous province; Precamb. Res. 160 308–322.

    Google Scholar 

  37. Frey F A, Mc Naughton N J, Nelson D R, deLaeter J R and Duncan R A 1996 Petrogenesis of the Bunbury basalt, Western Australia: Interaction between the Kerguelen plume and Gondwana lithosphere? Earth Planet. Sci. Lett. 144 163–183.

    Google Scholar 

  38. Frey F A, Coffin M F, Wallace P J, Weis D and Zhao X 2000 Origin and evolution of a submarine large igneous province: The Kerguelen Plateau and Broken Ridge, southern Indian Ocean; Earth Planet. Sci. Lett. 176 73–89.

    Google Scholar 

  39. Frey F A, Weis D, Borisova A Y and Xu G 2002 Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: New perspectives from ODP leg 120 sites; J. Petrol. 43 1207–1239.

    Google Scholar 

  40. Gasparik T 1984 Two Pyroxene Thermobaometry with new Experimental data in the system in CaO–MgO–Al2O3–SiO2; Contrib. Mineral. Petrol. 87 87–97.

    Google Scholar 

  41. Ghatak A and Basu A R 2011 Vestiges of the Kerguelen plume in the Sylhet Traps, Northeastern India; Earth Planet. Sci. Lett. 308 52–64.

    Google Scholar 

  42. Ghosh N C and Kent R W 2003 The Rajmahal Basalts: A review of their geology, composition and Petrogenesis; Memoir Geol. Soc. India 53 167–196.

    Google Scholar 

  43. Golani P R 1991 Nongchram fault: A major dislocation zone from western Meghalaya; J. Geol. Soc. India 12 56–62.

    Google Scholar 

  44. Gupta R P and Sen A K 1988 Imprints of Ninety-East Ridge in the Shillong Plateau, Indian Shield; Tectonophys. 154 335–341.

    Google Scholar 

  45. Hanson G N 1980 Rare Earth Elements in Petrogenetic studies of igneous systems; Ann. Rev. Earth Palnet. Sci. 8 371–406.

    Google Scholar 

  46. Harijan N, Sen A K, Sarkar S, Das J D and Kanungo D P 2003 Geomorphotectonics around the Sung valley carbonatite complex, Shillong plateau, NE India: Remote sensing and GIS approach; J. Geol. Soc. India 62(1) 103–109.

    Google Scholar 

  47. Hasse K M and Devey C W 1996 Geochemistry of lavas from the Ahu and Tupa volcanic fields, Easter Hotspot, South Pacific: Implications for intrapalate magma genesis near a spreading axis; Earth Planet. Sci. Lett. 157(1–4) 129–143.

    Google Scholar 

  48. Heltz R T 1973 Phase relations of basalts in their melting ranges at PH2O = 5 kb as a function of oxygen fugacity, Part1. Mafic phases; J. Petrol. 14(2) 249–302.

  49. Hergberg C 1995 Generation of plume magmas through time: An experimental approach; Chem. Geol. 126 1–16.

    Google Scholar 

  50. Hout F, Hebert R, Varfalvy V, Beaudoin G, Wang C S, Liu Z F, Cotton J and Dostal J 2002 The Beimarang Melange (Southern Tibet) brings additional constraints in asseing the origin, metamorphic evolution and obduction processes of the Yarlung Zangbo Ophiolite; J. Asian Earth Sci. 21 307–322.

    Google Scholar 

  51. Ingle S, Weis D and Frey F A 2002a Indian continental crust recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137); J. Petrol. 43 1241–1257.

    Google Scholar 

  52. Ingle S, Weis D, Scoates J S and Frey F A 2002b Relationship between the early Kerguelen plume and continental flood basalts of the paleo-Eastern Gondwana margins. Earth Planet. Sci. Lett. 197 35–50.

    Google Scholar 

  53. Irvine T N and Baragar W R A 1971 A guide to the chemical classification of the common volcanic rocks; Canadian J. Earth Sci. 8 523–548.

    Google Scholar 

  54. Islam M S, Meshesha D and Shinjo R 2014 Mantle source characterization of Sylhet Traps, northeastern India: A petrological and geochemical study; J. Earth Syst. Sci. 123(8) 1839–1855.

    Google Scholar 

  55. Jackson M G and Dasgupta R 2008 Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts; Earth Planet. Sci. Lett., https://doi.org/10.1016/j.epsl.2008.09.023.

    Google Scholar 

  56. Jensen L S 1976 A new cation plot for classifying subalkalic volcanic rocks; Misc. Pap. 66, Ont. Depart. of Mines, Ottawa, Canada.

  57. Johnson S Y and Alam A M N 1991 Sedimentation and tectonics of the Sylhet trough Bangladesh; Geol. Soc. Am. Bull. 103 1513–1527.

    Google Scholar 

  58. Jourdan F, Bertrand H, Scharer U, Blichert-Toft J, Feraud G and Kampunzu A B 2007 Major and trace elements and Sr, Nd, Hf, and Pb isotope compositions of the Karoo Large Igneous Province, Botswana, Zimbabwe: Lithosphere vs. mantle plume contribution; J. Petrol. 48 1043–1077.

    Google Scholar 

  59. Kayal J R 2001 Microearthquake activity in some parts of the Himalaya and the tectonic model; Tectonophys. 339 331–351.

    Google Scholar 

  60. Kent R W, Saunders A D, Kempton P D and Ghose N C (eds) 1997 Rajmahal basalts, eastern India: Mantle sources and melt distribution at a volcanic rifted margin; Geophys. Monograph (AGU), Washington DC, pp. 145–182.

  61. Kent R W, Pringle M S, Muller R D, Saunders A W and Ghose N C 2002 40Ar/39Ar geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen Plateau; J. Petrol. 43 1141–1153.

    Google Scholar 

  62. Khanna P P, Saini N K, Mukherjee P K and Purohit K K 2009 An appraisal of ICP-MS technique for determination of REEs: Long term QC assessment of Silicate rock analysis; Himalayan Geol. 30(1) 95–99.

    Google Scholar 

  63. Kontak D J, Jensen S M, Dostal J, Archibald D A and Kyser T K 2001 Cretaceous Mafic Dyke Swarm, Pearlyland, Northenmost Greenland: Geochronology and Petrology; Can. Mineral. 39 997–1020.

    Google Scholar 

  64. Lai S, Qin J, Li Y, Li S and Santosh M 2012 Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern China: Petrogenesis and tectonic implications; J. Asian Earth Sci. 47 216–230.

    Google Scholar 

  65. Le Bas M J 1962 The role of aluminium in igneous clinopyroxene with relation to their parentage; Am. J. Sci. 260 267–288.

    Google Scholar 

  66. Le Bas M J, Le Maitre R W, Streckeisen A and Zanemn B 1986 A chemical classification of volcanic rocks based on the total alkali–silica diagram; J. Petrol. 27 745–750.

    Google Scholar 

  67. Lepage L D 2003 ILMAT: An excel worksheet for ilmenite–magnetite geothermometry and geobarometry; Comput. Geosci. 29(5) 673–678.

    Google Scholar 

  68. Le Roex A P and Lanyon R 1998 Isotope and trace element geochemistry of Cretaceous Damaraland lamprophyre and carbonatites, northwestern Namibia: Evidence for plume–lithosphere interactions; J. Petrol. 39 1117–1146.

    Google Scholar 

  69. Lindsley D H 1983 Pyroxene thermometry; Am. Mineral. 68 477–493.

    Google Scholar 

  70. Lindsley D H and Spencer K J 1982 Fe–Ti oxide geothermometry: Reducing analyses of coexisting Ti–magnetite (Mt) and ilmenite (Ilm) abstract AGU 1982 Spring Meeting Eos Transactions; Am. Geophys. Union. 63(18) 471.

    Google Scholar 

  71. Leterrier J, Maury R C, Thoron P, Girard D and Marchal M 1982 Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series; Earth Planet. Sci. Lett. 59 139–154.

    Google Scholar 

  72. Manson V 1967 Geochemistry of basaltic rocks in Poldervaart treatise on rocks of basaltic composition; Intersci. Publ. John Wiley & Sons, New York, pp. 215–269.

    Google Scholar 

  73. McKenzie D amd O’Nions R 1991 Partial melt distributions from inversion of rare earth element concentrations; J. Petrol. 32 1021–1091.

    Google Scholar 

  74. Merceier J C C 1980 Single Pyroxene Thermometry; Tectonophys. 70 1–37.

    Google Scholar 

  75. Mitra S K 1998 Structural history of the rocks of the Shillong Group around Sohiong, east Khasi hills, Meghalaya; Indian J. Geol. 70 123–131.

    Google Scholar 

  76. Miyashiro A 1974 Volcanic rock series in island arcs and active continental margins; Am. J. Sci. 274 321–355.

    Google Scholar 

  77. Moretti R 2005 Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts; Ann. Geophys. 56 340–368.

    Google Scholar 

  78. Mitchell R H, Platt R G, Downey M and Laderoute D G 1991 Petrology of alkaline lamprophyres from the Coldwell alkaline complex, northwestern Ontario; Can. J. Earth Sci. 28 1653–1663.

    Google Scholar 

  79. Morimmoto N 1988 The Nomenclature of Pyroxenes; Mineral. Mag. 52 425–433.

    Google Scholar 

  80. Murthy N G K 1987 Mafic dyke swarms of the Indian Shield; In: Mafic Dyke Swarms (eds) Halls H C and Fahring W F, Geol. Assoc. Canada Spl. Paper 34 393–400.

  81. Nakamura N 1974 Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites; Geochim. Cosmochim. Acta. 38 757–775.

    Google Scholar 

  82. Nambiar A R 1987 Alkaline magmatism in parts of East Garo Hills and West Khasi Hills districts, Meghalaya; Rec. Geol. Surv. India 115 25–41.

    Google Scholar 

  83. Nambiar A R 2007 Petrology of lamprophyres from parts of East Garo Hills and West Khasi Hills districts, Meghalaya; J. Geol. Soc. India 32 125–136.

    Google Scholar 

  84. Nambiar A R and Golani P R 1985 A new find of carbonatite from Meghalaya; Curr. Sci. 54 281–282.

    Google Scholar 

  85. Nandy D R 2001 Geodynamics of northeastern India and the adjoining region; Acad. Publ. Kolkata, pp. 111–130.

  86. Neal C R, Mahoney J J and Chazey W J 2002 Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from Ocean Drilling Program Leg 183; J. Petrol43 1177–1206.

    Google Scholar 

  87. Nimis P 1995 A clinopyroxene geobarometer for basaltic systems based on crystal-structure modelling; Contrib. Mineral. Petrol. 121 115–125.

    Google Scholar 

  88. Nimis P and Taylor W R 2000 Single Clinopyroxene Thermobarometry for Garnet peridotite. Part 1. Calibaration and Testing of the Cr-in Cpax Barometer and an Enstatite in Cpx Thermometer; Contrib. Mineral. Petrol. 139 541–554.

    Google Scholar 

  89. Nisbet E G and Pearce J A 1977 Clinopyroxene composition in mafic lavas from different tectonic settings; Contrib. Mineral. Petrol. 63 149–160.

    Google Scholar 

  90. Pearce J A and Norry M J 1979 Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks; Contrib. Mineral. Petrol. 69 33–47.

    Google Scholar 

  91. Peate D W, Hawkesworth C J, Mantovani M S M, Rogers N W and Turner S P 1999 Petrogenesis and stratigraphy of the high Ti/Y Urubici magma type in the Paraná flood basalt province and implications for the nature of ‘Dupal’-type mantle in the South Atlantic region; J. Petrol. 40 451–473.

    Google Scholar 

  92. Polat A, Kerrich R and Wyman D A 1999 Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: Trace element and Nd isotope evidence for a heterogeneous mantle; Precamb. Res. 94 139–173.

    Google Scholar 

  93. Powell R and Powell M 1977 Geothermometry and oxygen barometry using coexisting iron-titanium oxides: A reappraisal; Mineral. Mag. 41(318) 257–263.

    Google Scholar 

  94. Putirka K, Johnson M, Kinzler R, Longhi J and Walker D 1996 Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar; Contrib. Mineral. Petrol. 123 92–108.

    Google Scholar 

  95. Putrika K D, Mikaelian H, Ryerson F and Shaw H F 2003 New clinopyroxene-liquid thermobarometers for mafic, evolved and volatile bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho; Am. Mineral. 88 1542–1554.

    Google Scholar 

  96. Putrika K D 2008 Thermometers and Barometers for volcanic systems; Rev. Mineral. Geochem. 69 61–120.

    Google Scholar 

  97. Rajamani V, Shivkumar K, Hanson G N and Shirey S B 1985 Geochemistry and petrogenesis of amphibolites, Kolar schist Belt, South India: Evidence for komatitic magma derived by low percentage of melting of the mantle; J. Petrol. 96 92–123.

    Google Scholar 

  98. Rajsekhar R P and Mishra D C 2008 Crustal structure of Bengal Basin and Shillong Plateau: Extension of Eastern Ghat and Satpura mobile belts to Himalayan fronts and seismotectonics; Gondwana Res., https://doi.org/10.1016/j.gr.2007.10.009.

    Article  Google Scholar 

  99. Rao J M 2002 Petrology and geochemistry of dolerite dykes, West Garo Hills, Meghalaya: A preliminary study; Gondwana Res. 5(4) 884–888.

    Google Scholar 

  100. Rao J M, Rao G V S P and Sarma K P 2009 Precambrian mafic magmatism of Shillong Plateau, Meghalaya and their evolutionary history; J. Geol. Soc. India 73 143–152.

    Google Scholar 

  101. Ray J, Saha A, Koeberl C, Thoni M, Ganguly S and Hazara S 2013 Geochemistry and Petrogenesis of Proterozoic mafic rocks from East Khasi Hills, Shillong Plateau, Northeastern India; Precamb. Res. 230 119–137.

    Google Scholar 

  102. Regelous M, Hofmann A W, Abouchami W and Galer S J G 2003 Geochemistry of lavas from the Emperor seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma; J. Petrol. 44 113–140.

    Google Scholar 

  103. Robertson E A M, Biggs J, Cashman K V, Flyod M A and Brown C V 2016 Influence of regional tectonics and pre-existing structures on the formation of elliptical calderas in the Kenyan Rift; In: Magmatic Rifting and Active Volcanism (eds) Wright T J, Ayele A, Ferguson D J, Kidane T and Vye-Brown C, Geol. Soc. London, Spl. Publ. 420 43–67.

  104. Rollinson H R 1993 Using Geochemical Data: Evaluation, Presentation, Interpretation, John Wiley, Chichester, 352p.

    Google Scholar 

  105. Rudnick R L and Gao S 2003 The Composition of the Continental Crust, In: Treatise on Geochemistry (eds) Holland H D and Turekian K K, Vol. 3, The Crust, Elsevier, Oxford, pp. 1–64.

  106. Safonova I Yu 2009 Intraplate magmatism and oceanic plate stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma; Ore Geol. Rev. 35 137–154.

    Google Scholar 

  107. Saini N K, Mukherjee P K, Khanna P P and Purohit K K 2007 A proposed amphibolite reference rock sample (AM-H) from Himachal Pradesh; J. Geol. Soc. India 69 799–802.

    Google Scholar 

  108. Saini N K, Khanna P P, Mukherjee P K and Purohit K K 2013 Preparation and characteristics of two geochemical reference materials: DG-H (granite) and AM-H (amphibolite) from the Himalayan orogenic belt; Geostand. Geoanal. Res. 38 111–122.

    Google Scholar 

  109. Sarkar A, Datta A K, Poddar B C, Bhattacharyya B K, Kollapuri V K and Sanwal R 1996 Geochronological studies of Mesozoic igneous rocks from eastern India; J. Southeast Asian Earth Sci. 13 77–81.

    Google Scholar 

  110. Sarma K P, Venkateshwaralu M, Patil S K, Laskar J J, Devi, N R and Mallikaharjuna R J 2014 Paleomagnetism of metadolerite dykes and sills from Proterozoic Shillong basin, NE India: Implications related to the age and magmatism; J. Geol. Soc. India. 83(2) 147–155.

    Google Scholar 

  111. Sarma K P, Laskar J J, Devi N R, Mazumdar N, Mallikarjuna Rao J and Venkateshwaralu M 2015 Geochemistry of Mesoproterozoic metadolerite dykes and sills of Shillong basin, Meghalaya, NE India; Asian J. Multidiscip. Studies 3(2) 37–47.

    Google Scholar 

  112. Sato H 1977 Nickel content of basaltic magmas: Identification of primary magmas and a measure of the degree of olivine fractionation; Lithos 10 113–120.

  113. Schweitzer E L, Papike J J and Bence A E 1979 Statistical Analysis of Clinopyroxenes from Deep Sea Basalts; Am. Mineral. 64 502–513.

    Google Scholar 

  114. Shaw D M 1970 Trace element fractionation during anatexis; Geochim. Cosmochim. Acta. 34 237–243.

    Google Scholar 

  115. Soesso A 1997 A multivariate statistical analysis clinopyroxene composition: Empirical coordinates for the crystallization PT-estimations; Geologiska Foreningens I Stockholms Forhandlingar. 119 55–60.

  116. Song X Y, Zhou M F, Hou Z Q, Cao Z M, Wang Y L and Li Y 2001 Geochemical constraints on the mantle source of the Upper Permian Emeishan Continental Flood Basalts, Southwestern China; Int. Geol. Rev. 43 213–225.

    Google Scholar 

  117. Spencer K J and Lindsley D H 1981 A solution model for coexisting iron-titanium oxides; Am. Mineral. 66(11–12) 1189–1201.

    Google Scholar 

  118. Srinivasan V 2005 The Dauki Fault in northeast India through remote sensing; J. Geol. Soc. India 66 413–426.

    Google Scholar 

  119. Srivastava R K and Sinha A K 2004 Geochemistry and Petrogenesis of early Cretaceous sub-alkaline mafic dykes from Swangkre–Rongmil, East Garo Hills, Shillong Plateau, NE India; Proc. Ind. Acad. Sci., Earth Planet Sci. 113 683–697.

    Google Scholar 

  120. Srivastava R K, Sivaji Ch and Chalapathi Rao N V 2008 Indian Dykes Through Space and Time: Retrospect and Prospect; In: Indian dykes: Geochemistry, Geophysics and Geochronology (eds) Srivastava R K, Ch Sivaji and Chalapathi Rao N V, Narosha Publishing House Pvt. Ltd., New Delhi, India, pp. 1–18.

  121. Storey M, Kent R W, Saunders A D, Hergt J, Salters V J M, Whitechurch H, Sevigny J H, Thirlwall M F, Leat P, Ghose N C and Gifford M 1992 Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau; Proc. Ocean Drilling Prog. Scientific Results 120 33–53.

    Google Scholar 

  122. Stormer J C 1983 The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multi-component iron-titanium oxides; Am. Mineral. 68(5–6) 586–594.

    Google Scholar 

  123. Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; Geol. Soc. London, Spec. Publ. 42 313–345.

    Google Scholar 

  124. Taylor S R and McLennan S M 1995 The geochemical evolution of the continental crust; Rev. Geophysics. 33 241–265.

    Google Scholar 

  125. Thompson R N, Morrison M A, Dickin A P and Hendry G L 1983 Continental Flood basalts arachnids rule OK? In: Continental Basalts and Mantle Xenoliths (eds) Hawkesworth C J and Norry M J, Shiva Pub. Cambridge, MA, pp. 158–185.

  126. Vijaya Kumar K, Rathna K and Leelanandan C 2015 Proterozoic subduction-related and continental rift zone mafic magmas from the Eastern Ghats Belt; Curr. Sci. 108(2) 184–197.

    Google Scholar 

  127. Weaver B L 1991 The origin of ocean island basalt end member compositions: Trace element and isotopic constraints; Earth Planet. Sci. Lett. 104 381–397.

    Google Scholar 

  128. Weis D and Frey F A 1991 Isotope geochemistry of the Ninety-east Ridge basalts: Sr, Nd, and Pb evidence for the involvement of the Kerguelen hotspot; In: Proceedings of the Ocean Drilling Program (eds) Weissel J, Peirce J, Taylor E and Alt J, 121 College Station TX, pp. 591–610.

  129. Wilson M 1993 Geochemical signatures of oceanic and continental basalts: A key to mantle dynamics? J. Geol. Soc. London 150 977–990.

    Google Scholar 

  130. Winter J D 2010 Principles of Igneous and Metamorphic Petrology; PHI, 693p.

  131. Zhu D, Mo X, Pan G, Zhao Z, Dong G, Shi Y, Liao Z, Wang L and Zhou C 2008 Petrogenesis of earliest early cretaceous mafic rocks from the Cona area of eastern Tethyan Himalaya in south Tibet: Interaction between the incubating Kerguelen plume and the eastern greater India lithosphere? Lithos 100 147–173.

    Google Scholar 

Download references

Acknowledgements

The author is thankful to the Department of Science and Technology, Govt. of India for extending financial support for the work (SR/FTP/ES-40/2011). The anonymous reviewers are gratefully acknowledged for their thorough and incisive review of this paper. Their constructive comments and suggestions have significantly improved the manuscript. I am indebted to Prof Santosh Kumar, Kumaun University, Nainital for his kind support and encouragement. Finally, the work is dedicated to late Prof Kali Prasad Sarma, Gauhati University, Assam, my PhD mentor, who inspired and encouraged me for pursuing research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Niva Rani Devi.

Additional information

Supplementary materials pertaining to this article are available on the Journal of Earth Science Website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Communicated by Rajneesh Bhutani

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

a-c Variation diagram of SiO2 vs. MgO, FeO(t) and CaO composition of Cpx (PDF 180 kb)

Fig. S2

a-c SiO2 vs CaO, Al2O3 and Na2O composition of Plag (PDF 225 kb)

Fig. S3

SiO2 vs whole rock major oxides (PDF 5 kb)

Fig. S4

Mg# vs whole rock major oxides (PDF 19 kb)

Fig. S5

Zr vs whole rock major oxide showing good crystallization trend (PDF 5 kb)

Fig. S6

Zr vs whole rock trace elements showing good crystallization trend (PDF 6 kb)

Fig. S7

MgO vs Fe2O3t plot showing olivine fractionation trend for NFZMD (TIFF 47 kb)

Table S1

Major oxide ratios of NFZMD as compared to OIB, CFB and N-MORB (DOCX 14 kb)

Table S2

Trace element ratios of dyke rocks compared to EMI-EMII-HIMU of OIB, Primitivemantle and N-MORB (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Devi, N.R. Phase petrographic, thermobarometric and petrochemical significance of Cretaceous mafic dykes along Nongchram Fault Zone of Swangkre–Rongmil area of Shillong plateau, NE India: Implications for genetic link to Kerguelen mantle plume. J Earth Syst Sci 129, 79 (2020). https://doi.org/10.1007/s12040-019-1323-2

Download citation

Keywords

  • Phase petrography Nongchram fault
  • Shillong plateau
  • Kerguelen plateau