Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index

Abstract

Drought is the most frequent natural disaster in Algeria during the last century, with a severity ranging over the territory and causing enormous damages to agriculture and economy, especially in the north-west region of Algeria. The above issue motivated this study, which is aimed to analyse and predict droughts using the Standardized Precipitation Index (SPI). The analysis is based on monthly rainfall data collected during the period from 1960 to 2010 in seven plains located in the north-western Algeria. While a drought forecast with 2 months lead-time is addressed using an artificial neural network (ANN) model. Based on SPI values at different time scales (3-, 6-, 9-, and 12-months), the seven plains of north-western Algeria are severely affected by drought, conversely of the eastern part of the country, wherein drought phenomena are decreased in both duration and severity. The analysis also shows that the drought frequency changes according to the time scale. Moreover, the temporal analysis, without considering the autocorrelation effect on change point and monotonic trends of SPI series, depicts a negative trend with asynchronous in change-point timing. However, this becomes less significant at 3 and 6 months’ time scales if time series are modelled using the corrected and unbiased trend-free-pre-whitening (TFPWcu) approach. As regards the ANN-based drought forecast in the seven plains with 2 months of lead time, the multi-layer perceptron networks architecture with Levenberg–Marquardt calibration algorithm provides satisfactory results with the adjusted coefficient of determination (\( R_{\text{adj}}^{2} \)) higher than 0.81 and the root-mean-square-error (RMSE) and the mean absolute error (MAE) less than 0.41 and 0.23, respectively. Therefore, the proposed ANN-based drought forecast model can be conveniently adopted to establish with 2 months ahead adequate irrigation schedules in case of water stress and for optimizing agricultural production.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Abenavoli M R, Leone M, Sunseri F, Bacchi M and Sorgonà A 2016 Root phenotyping for drought tolerance in bean landraces from Calabria (Italy); J. Agron. Crop Sci. 202 1–12, https://doi.org/10.1111/jac.12124.

    Article  Google Scholar 

  2. Abramowitz M and Stegun I A 1965 Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55); Courier Corporation.

  3. Abyaneh H Z, Nia A M, Varkeshi M B, Marofi S and Kisi O 2011 Performance evaluation of ANN and ANFIS models for estimating garlic crop evapotranspiration; J. Irrig. Drain. Eng., https://doi.org/10.1061/(ASCE)IR.1943-4774.0000298.

    Google Scholar 

  4. Aher S, Shinde S, Guha S and Majumder M 2017 Identification of drought in Dhalai river watershed using MCDM and ANN models; J. Earth Syst. Sci. 126(2) 21.

    Article  Google Scholar 

  5. Ali Z, Hussain I, Faisal M, Nazir H M, Hussain T, Shad M Y, Mohamd Shoukry A and Hussain Gani S 2017 Forecasting drought using multilayer perceptron artificial neural network model; Adv. Meteorol., https://doi.org/10.1155/2017/5681308.

    Google Scholar 

  6. Allende H, Moraga C and Salas R 2002 Artificial neural networks in time series forecasting: A comparative analysis; Kybernetika 38(6) 685–707.

    Google Scholar 

  7. Asong Z E, Wheater H S, Bonsal B, Razavi S and Kurkute S 2018 Historical drought patterns over Canada and their teleconnections with large-scale climate signals; Hydrol. Earth Syst. Sci. 22(6) 3105–3124.

    Article  Google Scholar 

  8. Bahrami M, Bazrkar S and Zarei A R 2019 Modeling, prediction and trend assessment of drought in Iran using standardized precipitation index; J. Water Clim. Change 10(1) 181–196.

    Article  Google Scholar 

  9. Baali A and Amine C 2015 Etude de l’impact des variations pluviométriques sur les fluctuations piézométriques des nappes phréatiques superficielles en zone semi-aride (Cas de la plaine de SAΪSS, Nord du Maroc); Eur. Sci. J. 11(27).

  10. Bari Abarghouei H, Kousari M R and Asadi Zarch M A 2013 Prediction of drought in dry lands through feedforward artificial neural network abilities; Arab. J. Geosci., https://doi.org/10.1007/s12517-011-0445-x.

    Article  Google Scholar 

  11. Bari Abarghouei H, Kousari M R and Asadi Zarch M A 2011 Prediction of drought in dry lands through feedforward artificial neural network abilities; Arab. J. Geosci. 6 1417–1433, https://doi.org/10.1007/s12517-011-0445-x.

    Article  Google Scholar 

  12. Barua S, Ng A W M and Perera B J C 2012 Artificial neural network-based drought forecasting using a nonlinear aggregated drought index; J. Hydrol. Eng. 17 1408–1413, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000574.

    Article  Google Scholar 

  13. Barua S, Perera B J C, Ng A W M and Tran D 2010 Drought forecasting using an aggregated drought index and artificial neural network; J. Water Clim. Chang., https://doi.org/10.2166/wcc.2010.000.

    Google Scholar 

  14. Belayneh A and Adamowski J 2012 Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression; Appl. Comput. Intell. Soft Comput., https://doi.org/10.1155/2012/794061.

    Google Scholar 

  15. Belayneh A, Adamowski J, Khalil B and Ozga-Zielinski B 2014 Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural networks and wavelet support vector regression models; J. Hydrol., https://doi.org/10.1016/j.jhydrol.2013.10.052.

    Article  Google Scholar 

  16. Byun H R and Kim D W 2010 Comparing the effective drought index and the standardized precipitation index; In: Economics of drought and drought preparedness in a climate change context, López-Francos A.(comp.), López-Francos A.(collab.). Options Méditerranéennes. Sér. A. Séminaires Méditerranéens, Vol. 95, pp. 85–89.

  17. Cancelliere A, Mauro G Di Bonaccorso B and Rossi G 2007 Drought forecasting using the standardized precipitation index. Water Resour. Manag., https://doi.org/10.1016/j.jhydrol.2013.10.052.

    Article  Google Scholar 

  18. Chai T and Draxler R R 2014 Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature; Geosci. Model Dev., https://doi.org/10.5194/gmd-7-1247-2014.

    Google Scholar 

  19. Chandramouli C V, Kaoukis N, Karim M and Dorworth L 2017 Uses of precipitation-based climate indices in drought characterization; J. Hydrol. Eng. 22 05017013, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001536.

    Article  Google Scholar 

  20. Choi B, Lee J H and Kim D H 2008 Solving local minima problem with large number of hidden nodes on two-layered feed-forward artificial neural networks; Neurocomputing 71(1618) 3640–3643.

    Article  Google Scholar 

  21. Dabanlı İ, Mishra A K and Şen Z 2017 Long-term spatio-temporal drought variability in Turkey; J. Hydrol. 552 779–792, https://doi.org/10.1016/j.jhydrol.2017.07.038.

    Article  Google Scholar 

  22. Dai A, Trenberth K E and Qian T 2004 A global dataset of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming; J. Hydrometeorol. 5 1117–1130, https://doi.org/10.1175/JHM-386.1.

    Article  Google Scholar 

  23. Dalezios N R, Papazafiriou Z G, Papamichail D M and Karacostas T S 1991 Drought assessment for the potential of precipitation enhancement in northern Greece; Theor. Appl. Climatol., https://doi.org/10.1007/BF00867995.

    Google Scholar 

  24. Dariane A B, Farhani M and Azimi S 2018 Long term streamflow forecasting using a hybrid entropy model; Water Resour. Manag. 32 1439–1451, https://doi.org/10.1007/s11269-017-1878-0.

    Article  Google Scholar 

  25. Dehghani M, Saghafian B, Rivaz F and Khodadadi A 2017 Evaluation of dynamic regression and artificial neural networks models for real-time hydrological drought forecasting; Arab. J. Geosci. 10(12) 266, https://doi.org/10.1007/s12517-017-2990-4.

    Article  Google Scholar 

  26. Demmak A 2008 Drought in Algeria 1975–2000 – Impact on water resources and control strategy [La sécheresse en Algérie des années 1975–2000 – Impact sur les ressources en eau et stratégie de lutte]; 2nd MEDA Water Reg. Event, 28–30 April 2008, Marrakech, Morocco, https://doi.org/10.1016/J.IJSBE.2014.04.006.

  27. Deo Ravinesh C, Kisi O and Singh V P 2017a Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model; Atmos. Res. 184 149–175, https://doi.org/10.1016/j.atmosres.2016.10.004.

    Article  Google Scholar 

  28. Deo Ravinesh C, Tiwari M K, Adamowski J F and Quilty J M 2017b Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model; Stoch. Environ. Res. Risk Assess. 31 1211–1240, https://doi.org/10.1007/s00477-016-1265-z.

    Article  Google Scholar 

  29. Dingman S 1994 Physical Hydrology; Prentice Hall. Inc., New Jersey.

    Google Scholar 

  30. Djerbouai S and Souag-Gamane D 2016 Drought forecasting using neural networks, wavelet neural networks, and stochastic models: Case of the Algerois Basin in North Algeria; Water Resour. Manag., https://doi.org/10.1007/s11269-016-1298-6.

  31. Edwards D C 1997 Characteristics of 20th century drought in the United States at multiple time scales (No. AFIT-97-051); Air Force Inst of Tech Wright-Patterson Afb Oh.

  32. Estrela T and Vargas E 2012 Drought management plans in the European Union. The case of Spain; Water Resour. Manag., https://doi.org/10.1007/s11269-011-9971-2.

    Article  Google Scholar 

  33. Gabriel K R and Neumann J 1962 A Markov chain model for daily rainfall occurrence at Tel Aviv; Quart. J. Roy. Meteorol. Soc. 88 90–95, https://doi.org/10.1002/qj.49708837511.

    Article  Google Scholar 

  34. Ghorbani M A, Zadeh H A, Isazadeh M and Terzi O 2016 A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction; Environ. Earth Sci., https://doi.org/10.1007/s12665-015-5096-x.

    Article  Google Scholar 

  35. Govindaraju R S 2000 Artificial neural networks in hydrology. I: Preliminary concepts; J. Hydrol. Eng. 5 115–123, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115).

    Article  Google Scholar 

  36. Goyal M K, Bharti B, Quilty J, Adamowski J and Pandey A 2014 Modeling of daily pan evaporation in subtropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS; J. Expert Syst. Appl., https://doi.org/10.1016/j.eswa.2014.02.047.

    Article  Google Scholar 

  37. Guhathakurta P, Menon P, Inkane P M, Krishnan U and Sable S T 2017 Trends and variability of meteorological drought over the districts of India using standardized precipitation index; J. Earth Syst. Sci. 126(8) 120.

    Article  Google Scholar 

  38. Guttman N B 1998 Comparing the Palmer drought index and the standardize precipitation index; J. Am. Water Resour. Assoc. 34 113–121, https://doi.org/10.1111/j.1752-1688.1998.tb05964.x.

    Article  Google Scholar 

  39. Habibi B, Meddi M, Torfs P J, Remaoun M and Van Lanen H A 2018 Characterisation and prediction of meteorological drought using stochastic models in the semi-arid Chéliff–Zahrez basin (Algeria); J. Hydrol.: Regional Studies 16 15–31.

    Google Scholar 

  40. Hamed K H and Ramachandra Rao A 1998 A modified Mann–Kendall trend test for autocorrelated data; J. Hydrol. 204 182–196, https://doi.org/10.1016/S0022-1694(97)00125-X.

    Article  Google Scholar 

  41. He Z, Wen X, Liu H and Du J 2014 A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region; J. Hydrol., https://doi.org/10.1016/j.jhydrol.2013.11.054.

    Article  Google Scholar 

  42. Hirose Y, Yamashita K and Hijiya S 1991 Back-propagation algorithm which varies the number of hidden units; Neural Networks, https://doi.org/10.1016/0893-6080(91)90032-Z.

    Article  Google Scholar 

  43. Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T and Pegion P 2012 On the increased frequency of Mediterranean drought; J. Clim. 25 2146–2161, https://doi.org/10.1175/JCLI-D-11-00296.1.

    Article  Google Scholar 

  44. Huang F, Huang J, Jiang S H and Zhou C 2017 Prediction of groundwater levels using evidence of chaos and support vector machine; J. Hydroinformatics 19(4) 586–606.

    Article  Google Scholar 

  45. Jain A and Kumar A M 2007 Hybrid neural network models for hydrologic time series forecasting; Appl. Soft Comput. 7(2) 585–592.

    Article  Google Scholar 

  46. Jalalkamali A, Moradi M and Moradi N 2015 Application of several artificial intelligence models and ARIMAX model for forecasting drought using the standardized precipitation index; Int. J. Environ. Sci. Technol., https://doi.org/10.1007/s13762-014-0717-6.

    Article  Google Scholar 

  47. Kendall M G 1975 Rank correlation measures; Charles Griffin, London, Vol. 202, 15p.

    Google Scholar 

  48. Khan M I, Liu D, Fu Q and Faiz M A 2018 Detecting the persistence of drying trends under changing climate conditions using four meteorological drought indices; Meteorol. Appl. 25(2) 184–194.

    Article  Google Scholar 

  49. Khan S, Gabriel H F and Rana T 2008 Standard precipitation index to track drought and assess impact of rainfall on watertables in irrigation areas; Irrig. Drain. Syst. 22 159–177, https://doi.org/10.1007/s10795-008-9049-3.

    Article  Google Scholar 

  50. Kim T-W and Valdés J B 2003 Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks; J. Hydrol. Eng. 8 319–328, https://doi.org/10.1061/(ASCE)1084-0699(2003)8:6(319).

    Article  Google Scholar 

  51. Komasi M, Sharghi S and Safavi H R 2018 Wavelet and cuckoo search-support vector machine conjugation for drought forecasting using standardized precipitation index (case study: Urmia Lake, Iran); J. Hydroinfor. 20 975–988, https://doi.org/10.2166/hydro.2018.115.

    Article  Google Scholar 

  52. Koutsoyiannis D 2003 Climate change, the Hurst phenomenon, and hydrological statistics; Hydrol. Sci. J. 48 3–24, https://doi.org/10.1623/hysj.48.1.3.43481.

    Article  Google Scholar 

  53. Koutsoyiannis D and Montanari A 2007 Statistical analysis of hydroclimatic time series: Uncertainty and insights; Water Resour. Res. 43(5), https://doi.org/10.1029/2006WR005592.

  54. Lazri M, Ameur S, Brucker J M, Lahdir M and Sehad M 2015 Analysis of drought areas in northern Algeria using Markov chains; J. Earth Syst. Sci. 124(1) 61–70.

    Article  Google Scholar 

  55. Liang Y, Niu D, Ye M and Hong W-C 2016 Short-term load forecasting based on wavelet transform and least squares support vector machine optimized by improved cuckoo search; Energies, https://doi.org/10.3390/en9100827.

    Article  Google Scholar 

  56. Lippmann R P 1987 An introduction to computing with neural nets; IEEE ASSP Mag. 4 4–22, https://doi.org/10.1109/MASSP.1987.1165576.

    Article  Google Scholar 

  57. Lloyd-Hughes B and Saunders M A 2002 A drought climatology for Europe; Int. J. Climatol. 22 1571–1592, https://doi.org/10.1002/joc.846.

    Article  Google Scholar 

  58. Maccioni P, Kossida M, Brocca L and Moramarco T 2015 Assessment of the drought hazard in the Tiber river basin in central Italy and a comparison of new and commonly used meteorological indicators; J. Hydrol. Eng. 20 05014029, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001094.

    Article  Google Scholar 

  59. Madadgar S and Moradkhani H 2013 Drought analysis under climate change using copula; J. Hydrol. Eng. 18 746–759, https://doi.org/10.1061/(ASCE)HE.1943-5584.

    Article  Google Scholar 

  60. Maier H R and Dandy G C 1996 The use of artificial neural networks for the prediction of water quality parameters; Water Resour. Res. 32 1013–1022, https://doi.org/10.1029/96WR03529.

    Article  Google Scholar 

  61. Mann H B 1945 Nonparametric tests against trend; Econometrica J. Econometric Soc. 13 245–259.

    Article  Google Scholar 

  62. Mariotti A 2010 Recent changes in the mediterranean water cycle: A pathway toward long-term regional hydroclimatic change? J. Clim. 23 1513–1525, https://doi.org/10.1175/2009JCLI3251.1.

    Article  Google Scholar 

  63. Marriott F H C and Pope J A 1954 Bias in the estimation of autocorrelations; Biometrika 41(3/4) 390–402.

    Article  Google Scholar 

  64. Masinde M 2014 Artificial neural networks models for predicting effective drought index: Factoring effects of rainfall variability; Mitig. Adapt. Strat. Gl. 19(8) 1139–1162.

    Article  Google Scholar 

  65. Masud M B, Khaliq M N and Wheater H S 2017 Projected changes to short- and long-duration precipitation extremes over the Canadian Prairie Provinces; Clim. Dyn., https://doi.org/10.1007/s00382-016-3404-0.

    Article  Google Scholar 

  66. McKee T B, Doesken N J and Kleist J 1993 The relationship of drought frequency and duration to time scales; Proceedings of the 8th Conference on Applied Climatology, Boston, MA: Am. Meteorol. Soc. 17(22) 179–183.

  67. Meddi H and Meddi M 2009 Variabilité des précipitations annuelles du Nord-Ouest de l’Algérie; Sci. Chang. Planétaires/Sécheresse 20 57–65.

    Google Scholar 

  68. Meddi M, Assani A A and Meddi H 2010 Temporal variability of annual rainfall in the Macta and Tafna Catchments, northwestern Algeria; Water Resour. Manag. 24 3817–3833, https://doi.org/10.1007/s11269-010-9635-7.

    Article  Google Scholar 

  69. Medjerab A and Henia L 2005 Régionalisation des pluies annuelles dans l’Algérie nord-occidentale/Regionalisation of annual rainfall in the north-western parts of Algeria; Rev. Geogr. Est. 45(2) 1–14, http://journals.openedition.org/rge/501.

  70. Mishra A K and Desai V R 2005 Drought forecasting using stochastic models; Stoch. Environ. Res. Risk Assess. 19 326–339, https://doi.org/10.1007/s00477-005-0238-4.

    Article  Google Scholar 

  71. Mishra A K and Desai V R 2006 Drought forecasting using feed-forward recursive neural network; Ecol. Modell. 198 127–138, https://doi.org/10.1016/j.ecolmodel.2006.04.017.

    Article  Google Scholar 

  72. Mishra A K and Singh V P 2010 A review of drought concepts; J. Hydrol. 391(1–2) 202–216.

    Article  Google Scholar 

  73. Mudelsee M 2001 Note on the bias in the estimation of the serial correlation coefficient of AR (1) processes; Stat. Pap. 42(4) 517–527.

    Article  Google Scholar 

  74. Noori R, Deng Z, Kiaghadi A and Kachoosangi F T 2015 How reliable are ANN, ANFIS and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? J. Hydraul. Eng. 142(1) 04015039.

    Article  Google Scholar 

  75. Onyutha C 2016 Statistical uncertainty in hydrometeorological trend analyses; Adv. Meteorol., https://doi.org/10.1155/2016/8701617.

    Google Scholar 

  76. Palmer W C 1965 Meteorological Drought; U.S. Weather Bur. Res. Pap. No. 45.

  77. Paulo A, Martins D and Pereira L S 2016 Influence of precipitation changes on the SPI and related drought severity. An analysis using long-term data series; Water Resour. Manag. 30 5737–5757, https://doi.org/10.1007/s11269-016-1388-5.

    Article  Google Scholar 

  78. Peñuelas J, Lloret F and Montoya R 2001 Severe drought effects on Mediterranean woody flora in Spain; Forest Sci. 47(2) 214–218.

    Google Scholar 

  79. Pettitt A N 1979 A non-parametric approach to the change-point problem; Appl. Stat. 28 126–135, https://doi.org/10.2307/2346729.

    Article  Google Scholar 

  80. Piyoosh A K and Ghosh S K 2017 Effect of autocorrelation on temporal trends in rainfall in a valley region at the foothills of Indian Himalayas; Stoch. Environ. Res. Risk Assess. 31 2075–2096, https://doi.org/10.1007/s00477-016-1347-y.

    Article  Google Scholar 

  81. Ramadan H H, Beighley R E and Ramamurthy A S 2013 Temperature and precipitation trends in Lebanon’s Largest River: The Litani Basin; J. Water Resour. Plan. Manag. 139 86–95, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000238.

    Article  Google Scholar 

  82. Raymond F, Ullmann A and Camberlin P 2016 Précipitations intenses sur le Bassin Méditerranéen: quelles tendances entre 1950 et 2013? Cybergeo Eur. J. Geogr. Nat Paysage document 760, https://doi.org/10.4000/cybergeo.27410.

  83. Rezaie-Balf M, Zahmatkesh Z and Kim S 2017 Soft computing techniques for rainfall-runoff simulation: Local non-parametric paradigm vs. model classification methods; Water Resour. Manag. 31(12) 3843–3865.

    Article  Google Scholar 

  84. Salhi C, Touaibia B and Zeroual A 2013 Les réseaux de neurones et la régression multiple en prédiction de l’érosion spécifique: cas du bassin hydrographique Algérois-Hodna-Soummam (Algérie); Hydrol. Sci. J. 58 1573–1580, https://doi.org/10.1080/02626667.2013.824090.

    Article  Google Scholar 

  85. Salvi K and Ghosh S 2016 Projections of extreme dry and wet spells in the 21st century India using stationary and non-stationary standardized precipitation indices; Clim. Change 139(3–4) 667–681.

    Article  Google Scholar 

  86. Şen Z 1998 Average areal precipitation by percentage weighted polygon method; J. Hydrol. Eng. 3(1) 69–72.

    Article  Google Scholar 

  87. Serinaldi F and Kilsby C G 2016 The importance of prewhitening in change point analysis under persistence; Stoch. Environ. Res. Risk Assess. 30 763–777, https://doi.org/10.1007/s00477-015-1041-5.

    Article  Google Scholar 

  88. Shabri A 2014 A hybrid wavelet analysis and adaptive neuro-fuzzy inference system for drought forecasting; Appl. Math. Sci. 8 6909–6918, https://doi.org/10.12988/ams.2014.48263.

    Article  Google Scholar 

  89. Sheela K G and Deepa S N 2013 Review on methods to fix number of hidden neurons in neural networks neuro-fuzzy inference system for drought forecasting; Math. Probl. Eng., https://doi.org/10.1155/2013/425740.

    Google Scholar 

  90. Sheffield J and Wood E F 2008 Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations; Clim. Dyn. 31 79–105, https://doi.org/10.1007/s00382-007-0340-z.

    Article  Google Scholar 

  91. Shiau J T 2006 Fitting drought duration and severity with two-dimensional copulas; Water Resour. Manag. 20 795–815, https://doi.org/10.1007/s11269-005-9008-9.

    Article  Google Scholar 

  92. Shirmohammadi B, Moradi H, Moosavi V, Semiromi M T and Zeinali A 2013 Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: Southeastern part of east Azerbaijan province, Iran); Nat. Hazards, https://doi.org/10.1007/s11069-013-0716-9.

    Article  Google Scholar 

  93. Shoaib M, Shamseldin A Y, Melville B W and Khan M M 2016 Hybrid wavelet neuro-fuzzy approach for rainfall-runoff modeling; J. Comput. Civil Eng., https://doi.org/10.1061/(ASCE)CP.1943-5487.0000457.

    Google Scholar 

  94. Soh Y W, Koo C H, Huang Y F and Fung K F 2018 Application of artificial intelligence models for the prediction of standardized precipitation evapotranspiration index (SPEI) at Langat River Basin, Malaysia; Comput. Electron. Agric. 144 164–173, https://doi.org/10.1016/J.COMPAG.2017.12.002.

    Article  Google Scholar 

  95. Spinoni J, Naumann G, Carrao H, Barbosa P and Vogt J 2014 World drought frequency, duration and severity for 1951–2010; Int. J. Climatol. 34 2792–2804, https://doi.org/10.1002/joc.3875.

    Article  Google Scholar 

  96. Stocker T, Qin D, Plattner G and Tignor M 2013 IPCC, 2013: Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel.

  97. Storch H von Navarra A 1995 Analysis of Climate Variability, Springer-Verlag, Berlin-Heidelberg, 334p.

    Google Scholar 

  98. Tang Z and Fishwick P A 1993 Feedforward neural nets as models for time series forecasting; J. Comput. 5 374–385, https://doi.org/10.1287/ijoc.5.4.374.

    Article  Google Scholar 

  99. Tarawneh Z and Khalayleh Y 2016 Improved estimate of multiyear drought for water resources management studies; J. Water Clim. Chang. 7 721–730, https://doi.org/10.2166/wcc.2016.151.

    Article  Google Scholar 

  100. Thom H C S 1958 A note on the Gamma Distribution; Mon. Weather Rev. 86 117–122, https://doi.org/10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2.

    Article  Google Scholar 

  101. Thorn H C S 1966 Some methods of climatological analysis; library.wmo.int Number 81, 53p.

  102. Tian Y, Xu Y P and Wang G 2018 Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin; Sci. Total Environ., https://doi.org/10.1016/j.scitotenv.2017.12.025.

    Article  Google Scholar 

  103. Tongal H and Booij M J 2017 Quantification of parametric uncertainty of ANN models with GLUE method for different streamflow dynamics; Stoch. Environ. Res. Risk Assess. 31(4) 993–1010.

    Article  Google Scholar 

  104. Torranin P 1973 Unpredictability of hydrological drought; In: The Second International Symposium in Hydrology, Fort Collins, Colo., Water Resources Publications, pp. 595–604.

    Google Scholar 

  105. Tramblay Y, El Adlouni S and Servat E 2013 Trends and variability in extreme precipitation indices over Maghreb countries; Nat. Hazards Earth Syst. Sci. 13 3235–3248, https://doi.org/10.5194/nhess-13-3235-2013.

    Article  Google Scholar 

  106. Trenn S 2008 Multilayer perceptrons: Approximation order and necessary number of hidden units. IEEE Trans. Neural Networks, https://doi.org/10.1109/TNN.2007.912306.

    Article  Google Scholar 

  107. Vicente-Serrano S M, Begueria S and Lopez-Moreno J I 2010 A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index; J. Clim. 23 1696–1718, https://doi.org/10.1175/2009JCLI2909.1.

    Article  Google Scholar 

  108. Wang L, Zeng Y and Chen T 2015 Back propagation neural network with adaptive differential evolution algorithm for time series forecasting; Expert Syst. Appl., https://doi.org/10.1016/j.eswa.2014.08.018.

    Article  Google Scholar 

  109. Wilhite D A and Glantz M H 1985 Understanding: The drought phenomenon: The role of definitions; Water Int., https://doi.org/10.1080/02508068508686328.

    Article  Google Scholar 

  110. Willmott C J and Matsuura K 2005 Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res., https://doi.org/10.3354/cr030079.

    Article  Google Scholar 

  111. WMO 2008 Guide to Hydrological Practice, Volume I, Hydrology – From Measurement to Hydrological Information; 6th edn, World Meteorological Organisation, Geneva, Switzerland.

  112. Wong F S 1991 Time series forecasting using backpropagation neural networks; Neurocomputing 2 147–159, https://doi.org/10.1016/0925-2312(91)90045-D.

    Article  Google Scholar 

  113. Xoplaki E, González-Rouco J F, Luterbacher J and Wanner H 2004 Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends; Clim. Dyn. 23 https://doi.org/10.1007/s00382-004-0422-0.

  114. Yue S, Pilon P and Cavadias G 2002 Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 259, https://doi.org/10.1016/S0022-1694(01)00594-7.

    Article  Google Scholar 

  115. Yue S and Wang C 2004 The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series; Water Resour. Manag. 18 201–218, https://doi.org/10.1023/B:WARM.0000043140.61082.60.

    Article  Google Scholar 

  116. Zeroual A, Assani A and Meddi M 2017 Combined analysis of temperature and rainfall variability as they relate to climate indices in Northern Algeria over the 1972–2013 period; Hydrol. Res. 48 584–595.

    Article  Google Scholar 

  117. Zeroual A, Assani A A, Meddi M and Alkama R 2019 Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme; Clim. Dyn. 52(1–2) 227–243.

    Article  Google Scholar 

  118. Zeroual A, Meddi M and Assani A A 2016 Artificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictions; Water Resour. Manag. 30 3191–3205, https://doi.org/10.1007/s11269-016-1340-8.

    Article  Google Scholar 

  119. Zhang Q, Li J, Singh V P and Bai Y 2012 SPI-based evaluation of drought events in Xinjiang, China; Nat. Hazards 64 481–492, https://doi.org/10.1007/s11069-012-0251-0.

    Article  Google Scholar 

  120. Zhang Y, Li W, Chen Q, Pu X and Xiang L 2017 Multi-models for SPI drought forecasting in the north of Haihe River Basin, China; Stoch. Environ. Res. Risk Assess. 31 2471–2481, https://doi.org/10.1007/s00477-017-1437-5.

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the National Agency of Water Resources for providing material help and data on which reported analysis are based on.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ayoub Zeroual.

Additional information

Supplementary materials pertaining to this article are available on the Journal of Earth Science Website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Communicated by Subimal Ghosh

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1545 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Achour, K., Meddi, M., Zeroual, A. et al. Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J Earth Syst Sci 129, 42 (2020). https://doi.org/10.1007/s12040-019-1306-3

Download citation

Keywords

  • Algeria
  • drought forecasting
  • artificial neural networks
  • standardized precipitation index
  • trend-free-pre-whitening