Skip to main content
Log in

Geochemistry and petrogenesis of Biabanak-Bafq mafic magmatism: Implication for the evolution of central Iranian terrane

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Precambrian magmatism in the Biabanak-Bafq district represents an extensive sequence of mafic magmatic rocks. Major, trace and rare earth elements reveal that the low-Ti basement mafic rocks are magnesium tholeiite and low-Ti cover a mafic rock belongs to Fe-tholeiite, whereas, the high-Ti alkaline mafic rocks, as well as dolerites, show much more Fe–Ti enrichment. Primitive mantle normalized trace element patterns show a relative enrichment of LREE and LILE and depletion of HFSE, but have an equally distinct continental signature reflected by marked negative Nb, Sr, P, and Ti anomalies. The composition of the intrusive rocks is consistent with fractional crystallization of olivine ± clinopyroxene ± plagioclase, whereas variations in the Sr and Nd isotope compositions suggest heterogeneous sources and crustal contamination. Low-Ti group samples contain a crustal signature in the form of high La/Yb, Zr/Nb, and negative \(\varepsilon \hbox {Nd}\) values. In contrast, high-Ti mafic magmatic rocks display an increase in La/Yb with a decrease in Proterozoic alkaline rocks recognized across the central Iran. The presence of diverse mafic magmatic rocks probably reflects heterogeneous nature of sub-continental lithospheric mantle (SCLM) source. The mafic magmatism largely represents magmatic arc or rift tectonic setting. It is suggested that the SCLM sources were enriched by subduction processes and asthenospheric upwelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad T and Tarney J 1991 Geochemistry and petrogenesis of Garhwal volcanics: Implications for evolution of the N-Indian lithosphere; Precamb. Res. 50(12) 69–88.

    Article  Google Scholar 

  • Ahmad T and Tarney J 1994 Geochemistry and petrogenesis of late Archean Aravalli volcanics, basement enclaves and granitoids, Rajasthan; Precamb. Res. 65(14) 1–23.

    Article  Google Scholar 

  • Ahmad T, Mukherjee P K and Trivedi J R 1999 Geochemistry of Precambrian mafic magmatic rocks of the western Himalaya, India: Petrogenetic and tectonic implications; Chem. Geol. 160(12) 103–119.

    Article  Google Scholar 

  • Alavi M 1991 Tectonic map of the Middle East: Tehran; Geological Survey of Iran, scale 1:5,000,000.

  • Alirezaei S and Hassanzadeh J 2012 Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: A new record of the Gondwana break-up in Iran; Lithos 151 122–134.

    Article  Google Scholar 

  • Avigad D and Gvirtzman Z 2009 Late Neoproterozoic rise and fall of the northern Arabian–Nubian Shield: The role of the lithospheric mantle deamination and subsequent thermal subsidence; Tectonophys. 477 217–228.

    Article  Google Scholar 

  • Azer M K, Stern R J and Kimura J I 2010 Origin of a Late Neoproterozoic (\(605 \pm 13\ \text{ Ma }\)) intrusive carbonate-albitite complex in southern Sinai, Egypt; Int. J. Earth Sci. 99(2) 245–267.

    Article  Google Scholar 

  • Azer M K, Abu El-Ela F F and Ren M 2012 The petrogenesis of late Neoproterozoic mafic dyke like intrusion in south Sinai, Egypt; J. Asian Earth Sci. 54 91–109.

    Article  Google Scholar 

  • Azer M K 2013 Late Edicaran (605–580 Ma) post-collisional alkaline magmatism in the Arabian–Nubian Shield: A case study of Serbal ring-shaped intrusion, southern Sinai, Egypt; J. Asian Earth Sci. 77 203–223.

    Article  Google Scholar 

  • Baker J, MacPherson C G, Menzies M A, Thiriwall M F, Al-Kadal M and Mattey D P 2000 Resolving crustal and mantle contributions to continental flood volcanism, Yemen: Constraints from mineral oxygen isotope data; J. Petrol.  41(12) 1805–1820.

    Article  Google Scholar 

  • Be’eri-Shlevin Y, Katzir Y and Whitehouse M 2009 Post-collisional tectonomagmatic evolution in the northern Arabian–Nubian Shield: Time constraints from ion-probe U–Pb dating of zircon; J. Geol. Soc. 166 71–85.

    Article  Google Scholar 

  • Beeri-Shlevi Y, Katzir Y and Valley J W 2009 Crustal evolution and recycling in a juvenile contenint: Isotope ratio of zircon in the northern Arabian -Nubian Shield; Lithos 107 169–184.

    Article  Google Scholar 

  • Beeri-Shlevi Y, Katzir Y Blichert-Toft, Kleinhanns I C and Whiteehouse M 2010 Nd -Sr -Hf -O isotope provinciality in the northernmost Arabian -Nubian Shield: Implications for crustal evolution; Contrib. Mineral. Petrol. 160 181–201.

    Article  Google Scholar 

  • Berberian M and King G C P 1981 Towards a paleogeography and tectonic evolution of Iran; Can. J. Earth Sci. 18(2) 210–265.

    Article  Google Scholar 

  • Bhattacharya S, Das P, Chaudhary A K and Saw A K 2010 Mafic granulite xenoliths in the Eastern Ghats belt: Implications for lower crustal processes in the south eastern Indian peninsula; Ind. J. Geol. 80 55–69.

    Google Scholar 

  • Bhattacharya S, Das P, Chaudhary A K and Saw A K 2011 Mafic granulite xenoliths in the eastern Indian shield: Evidence for recycled continental crust in the Archean mantle; Lithosphere 3(2) 155–169.

    Article  Google Scholar 

  • Bickle M J 1986 Implications of melting for stabilisation of the lithosphere and heat loss in the Archaean; Earth Planet Sci. Lett. 80(34) 314–324.

    Article  Google Scholar 

  • Boily M and Ludden J N 1991 Trace element and Nd isotopic variations in Early Proterozoic dyke swarms emplaced in the vicinity of the Kapuskasing structural zone: Enriched mantle or assimilation and fractional crystallization process?; Can. J. Earth Sci. 28(1) 26–36.

    Article  Google Scholar 

  • Chesley J T and Ruiz J 1998 Crust–mantle interaction in large igneous provinces: Implications from the Re–Os isotope systematics of the Columbia River flood basalts; Earth Planet Sci. Lett. 154(14) 1–11.

    Article  Google Scholar 

  • Cloetingh S and Wortel R 1985 Regional stress field of the Indian Plate; Geophys. Res. Lett. 12(2) 77–80.

    Article  Google Scholar 

  • Cloetingh S and Wortel R 1986 Stress in the Indo-Australian Plate; Tectonophys. 132 49–67.

    Article  Google Scholar 

  • Condie K C, Bobnow D J and Card K D 1987 Geochemistry of Precambrian mafic dykes from the southern Superior Province; In: Mafic Dyke Swarms (eds) Halls H C and Fahrig W D, Geol. Assoc. Can. Spec. Papers 34 95–108.

  • Condie K C 1990a Geochemical characteristics of Precambrian basaltic greenstones; In: Early Precambrian basic magmatism (eds) Hall R P and Hughes D J, Blackie Publication, Glasgow, UK, pp. 40–55.

    Chapter  Google Scholar 

  • Condie K C 1990b Growth and accretion of continental crust: inferences based on Laurentia; Chem. Geol. 83(34) 183–194.

    Article  Google Scholar 

  • Cummins L E, Arthur J D and Ragland P C 1992 Classification and tectonic implications for early Mesozoic magma types of the circum-Atlantic; In: Eastern North American Mesozoic Magmatism (eds) Puffer J H and Ragland P C, Geol. Soc. Am. Spec. Paper 268 119–135.

  • Daliran F 2002 Kiruna-type iron oxide-apatite ores and apatitites of Bafq district, Iran, with an emphasis on the REE geochemistry of their apatite’s; In: Hydrothermal iron oxide copper-gold and related deposits (ed.) Porter T M, PGC Publishing, Linden Park, South Australia, pp. 303–320.

    Google Scholar 

  • Daliran F, Stosch H G and Williams P 2009 A review of the Early Cambrian magmatic and metasomatic events and their bearing on the genesis of the Fe oxide-REE apatite deposits (IOA) of the Bafq District, Iran; In: Smart science for exploration and mining (eds) Williams et al., Proceedings of the \(10{{\rm th}}\) Biennial SGA Meeting, Townsville, Australia, 17–\(20{{\rm th}}\) August.

  • Daliran F, Stosch H G, Williams P, Jamali H and Dorri M B 2010 Early Cambrian iron oxide-apatite-REE (U) Deposits of the Bafq District, east-central Iran; In: Exploring for Iron oxide copper-gold deposits: Canada and Global analogues (eds) Corriveau L and Mumin H, Geol. Assoc. Can. Short Course Notes 20 143–155.

  • Dasgupta S, Bose S and Kaushik D 2013 Tectonic evolution of the Eastern Ghats Belt, India; Precamb. Res. 227 247–258.

    Article  Google Scholar 

  • Davies J F, Grant R W E and Whitehead R E S 1979 Immobile trace elements and Archean volcanic stratigraphy in the Timmins mining area, Ontario; Can. J. Earth Sci. 16(2) 305–311.

    Article  Google Scholar 

  • Devey C V and Cox K J 1987 Relationship between crustal contamination and crystallization in continental flood basalt magmas with special reference to the Deccan traps of the Western Ghats, India; Earth Planet. Sci. Lett. 84(1) 59– 68.

    Article  Google Scholar 

  • Drury S A 1983 The petrogenesis and tectonic setting of Archaean metavolcanics from Karnataka state, south India; Geochim. Cosmochim. Acta 47(2) 317–329.

    Article  Google Scholar 

  • Eby N 1985 Sr and Pb isotopes, U and Th chemistry of alkaline Montregian and White Mountain igneous provinces, eastern North America; Geochim. Cosmochim. Acta 49(5) 1143–1153.

    Article  Google Scholar 

  • Ellam R M 1992 Lithospheric thickness as a control on basalt geochemistry; Geology 20(2) 153–156.

    Article  Google Scholar 

  • Ernst R E and Buchan K L 1997 Layered mafic intrusions: A model for their feeder systems and relationship with giant dyke swarms and mantle plume centres; S. Afr. J. Geol. 100(4) 319–334.

    Google Scholar 

  • Ernst R E and Buchan K L 1997 Giant radiating dyke swarms: Their use in identifying pre-Mesozoic large igneous provinces and mantle plumes; In: Large Igneous Provinces: Continental, Oceanic, and Planetary Volcanism (eds) Mahoney J and Coffin M, Geophys. Monograph Ser. Am. Geophys. Union 100 297–333.

  • Ernst R E and Buchan K L 2001 Large mafic magmatic events through time and links to mantle plume heads; In: Mantle plumes: Their identification through time (eds) Ernst R E and Buchan K L, Geol. Soc. Am. Boulder CO, pp. 483–575.

  • Eyal M, Livinovsky B, Jan B M and Katzir Y 2010 Origin and evolution of post-collisional Magmatism: Coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai peninsula; Chem. Geol. 269(34) 153–179.

    Article  Google Scholar 

  • Floyd P A 1993 Geochemical discrimination and petrogenesis of alkalic basalt sequences in part of the Ankara mélange, central Turkey; J. Geol. Soc. London 150 541–550.

    Article  Google Scholar 

  • Gallagher K and Hawkesworth C 1992 Dehydration melting and the generation of continental flood basalts; Nature 358 57–59.

    Article  Google Scholar 

  • Genna A, Nehlig P, Goff E L E, Guerrot C and Shanti M 2002 Proterozoic tectonism of Arabian Shield; Precamb. Res. 117(12) 21–40.

    Article  Google Scholar 

  • Gibson S A, Thompson R N, Leonardo O H, Dickin A P and Mitchell J G 1995 The Late Cretaceous impact of the Trinidad mantle plume: Evidence from large-volume, mafic, potassic magmatism in SE Brazil; J. Petrol. 36(1) 189–229.

    Article  Google Scholar 

  • Ghorbani M 2013 The economic geology of Iran: Mineral deposits and natural resources; Springer Geol. Springer Sci. Bus. Med. Dordrecht 45 569p, https://doi.org/10.1007/978-94-007.

  • Greenough J D, Fryer B J and Robinson P T 1990 Geochemical effects of alteration on mafic rocks from Indian Ocean Site 706; In: Proceedings of the Ocean Drilling Program (eds) Duncan R A, Backman J and Peterson L C, Sci. Results 115 85–92.

  • Greenough J D, Dostal J and Greenough L M M 2007 Incompatible element ratios in French Polynesia basalts: Describing mantle component fingerprints; Austr. J. Earth Sci. 54(7) 947–958.

    Article  Google Scholar 

  • Haghipour A 1974 Etude géologique de la region de Biabanak Bafq (Iran Central); petrologie et tectonique du precambrien et de sa couverture, Ph.D. thesis, universite scientifique et medicale de Grenoble, France, 403p.

  • Haghipour A 1977 Geological Map of the Biabanak-Bafq Area; Geological Survey of Iran.

  • Hanson G N 1980 Rare earth elements in petrogenetic studies of igneous rocks; Ann. Rev. Earth Planet. Sci. 8 371–406.

    Article  Google Scholar 

  • Hassanzadeh J, Stockli D F, Horton B K, Axen G J, Stockli L D, Grove M, Schmitt A K and Walker J D 2008 U–Pb zircon geochronology of late Neoproterozoic–Early Cambrian Granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement;Tectonophys. 451(14) 71–96.

    Article  Google Scholar 

  • Hart W K 1985 Chemical and isotopic evidence for mixing between depleted and enriched mantle, northwestern USA; Geochim. Cosmochim. Acta 49(1) 131–144.

    Article  Google Scholar 

  • Hart S R 1988 Heterogeneous mantle domains: Signatures, genesis and mixing chronologies; Earth Planet. Sci. Lett. 90(3) 273–296.

    Article  Google Scholar 

  • Hergt J M, Chappell B W, McCulloch M T, McDougall I and Chivas A R 1989 Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania; J. Petrol. 30 841–883.

    Article  Google Scholar 

  • Hoffman P F 1991 Did the breakout of Laurentia turn Gondwana inside-out?; Science 252(5011) 1409–1412.

    Article  Google Scholar 

  • Horan M F, Hanson G N and Spencer K J 1987 Pb and Nd isotope and trace elements constraints on the origin of basic rocks in an early Proterozoic igneous complex, Minnesota; Precamb. Res. 37(4) 323–342.

    Article  Google Scholar 

  • Huang S, Pollack H N and Shen P Y 2000 Temperature trends over the past five centuries reconstructed from borehole temperatures; Nature 403 756–758.

    Article  Google Scholar 

  • Irvine T N and Barager W R A 1971 A guide to the chemical classification of the common volcanic rocks; Can. J. Earth Sci. 8(5) 523–548.

    Article  Google Scholar 

  • Jackson J and McKenzie D 1984 Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan; Geophys. J. Roy. Astron. Soc. 77 185–264.

    Article  Google Scholar 

  • Jarrar G, Wachendorf H and Zachmann D 1993 A Pan-African alkaline pluton intruding the Saramuj conglomerate, south-west Jordan; Int. J. Earth Sci. 82(1) 121–135.

    Google Scholar 

  • Jensen L S 1976 A New Cation Plot for Classifying Subalkalic Volcanic Rocks; Ontario Division of Mine, Miscellaneous Paper 66, 22p.

    Google Scholar 

  • Kröner A 1985 Ophiolites and the evolution of the tectonic boundaries in the late Proterozoic Arabian-Nubian Shield of northeast Africa and Arabia; Precamb. Res. 27(13) 277–300.

    Article  Google Scholar 

  • Kumar A and Ahmad T 2007 Geochemistry of mafic dykes in parts of Chhotanagpur Gneissic Complex: Petrogenetic and tectonic implications; Geochem. J. 41(3) 173–186.

    Article  Google Scholar 

  • Longjam K C and Ahmad T 2012 Geochemical characterization and petrogenesis of Khairanagh volcanics: Implications for crustal evolution; Geol. J. 47(23) 130–143.

    Article  Google Scholar 

  • LeCheminant A N and Heaman L M 1989 Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening; Earth Planet. Sci. Lett. 96(12) 38–48.

    Article  Google Scholar 

  • Merrt J G 2003 A synopsis of events related to the assembly of eastern Gondwana; Tectonophys. 362(14) 1–40.

    Article  Google Scholar 

  • Molzahn M, Reisberg L and Worner G 1996 Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalt, Antarctica: Evidence for an enriched subcontinental lithospheric source; Earth Planet. Sci. Lett. 144(34) 529–546.

    Article  Google Scholar 

  • Mullen E D 1983 MnO–P\(_2\)O\(_5\)–TiO\(_2\): A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis; Earth Planet. Sci. Lett. 62 53–62.

    Google Scholar 

  • Nabavi M H 1976 An introduction to the Iranian geology; Geological Survey of Iran, 110p. (in Persian).

  • Nadimi A 2007 Evolution of the central Iranian basement; Gondwana Res. 12(3) 324–333.

    Article  Google Scholar 

  • Nelson S T and Davidson J P 1993 Interactions between mantle derived magmas with mafic crust, Henry mountains, Utah; J. Geophys. Res. 98(B2) 1837–1852, https://doi.org/10.1029/92JB02689.

    Article  Google Scholar 

  • Nesbitt R W, Sun S S and Purivs A C 1979 Komatiites: Geochemistry and genesis; Can. Mineral. 17 165–186.

    Google Scholar 

  • Neumann W, Breuer D and Spohn T 2014 Differentiation of Vesta: Implications for a shallow magma ocean; Earth Planet. Sci. Lett. 395 267–280.

    Article  Google Scholar 

  • Pearce J A 1996 A user’s guide to basalt discrimination diagrams; In: Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration (eds) Bailes A H, Christiansen E H, Galley A G et al., Short Course Notes, Geol. Assoc. Can. 12 79–113.

  • Peng Z X, Mahoney J J, Hooper P R, and Beane J 1994 A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps; Geochim. Cosmochim. Acta 58(1) 267–288.

    Article  Google Scholar 

  • Pollard P J, Millburn D, Taylor R G and Cuff C 1983 Mineralogical and textural modifications in granites associated with mineralization, Herberton-Mt Garnet Tinfield, Queensland; Geological Society of Australia Queensland Division, pp. 413–430.

  • Puchtel I S, Brugmann G E and Hofmann A W 1999 Precise Re–Os mineral isochron and Pb–Nd–Os isotope systematics of a mafic-ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield); Earth Planet. Sci. Lett. 170(4) 447–461.

    Article  Google Scholar 

  • Ramezani J and Tucker R D 2003 The Saghand region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics; Am. J. Sci. 303(7) 622–665.

    Article  Google Scholar 

  • Rollinson H 1993 Using Geochemical Data: Evaluation, Presentation, Interpretation; Longman, London, 352p.

    Google Scholar 

  • Samani B 1988 Metallogeny of the Precambrian in Iran; Precamb. Res. 39(12) 85–106.

    Article  Google Scholar 

  • Schmidt D L, Hadley D G and Stoeser D B 1978 Late Proterozoic crustal history in southern Najd province, Saudi Arabia (abstract); Precamb. Res. 6 A35.

    Article  Google Scholar 

  • Shervais J W 1982 Ti–V plots and petrogenesis of modern and ophiolitic lavas; Earth Planet. Sci. Lett. 59(1) 101–118.

    Article  Google Scholar 

  • Sillitoe R H 1979 Metallogenic consequences of late Neoproterozoic suturing in Arabia, Egypt, Sudan and Iran; In: Evolution and mineralization of Arabian–Nubian shield (volume 1) (ed.) Tahoun S A, Instit. Appl. Geol., Pergamon Press Ltd., Oxford 3 110–120.

  • Stern R J 1994 Arc assembly and continental collision in the Neoproterozoic East African Orogeny: Implications for the consolidation of Gondwana land; Ann. Rev. Earth Planet. Sci. 22 319–351.

    Article  Google Scholar 

  • Stern R J and Voegeli D A 1987 Geochemistry, geochronology, and petrogenesis of a late Precambrian (\(\sim \)590 Ma) composite dike from the northeastern desert of Egypt; Geo. Rundschau. 76 325–341.

    Article  Google Scholar 

  • Stern R J, Gottfried D and Hedge C E 1984 Late Precambrian rifting and crustal evolution in the Northeastern Desert of Egypt; Geology 12 168–171.

    Article  Google Scholar 

  • Stöcklin J, Ruttner A and Nabavi M 1964 New data on the lower Paleozoic and Precambrian of North Iran; Geol. Surv. Iran 1 29p.

  • Stöcklin J 1968 Structural history and tectonics of Iran: A review; Am. Assoc. Petrol. Geol. Bull. 52 1229–1258.

    Google Scholar 

  • Stöcklin J 1974 Possible Ancient Continental Margins in Iran; In: The Geology of Continental Margins (eds) Burke C A and Drake C L, Springer Verlag, New York, pp. 873–887.

    Chapter  Google Scholar 

  • Stöcklin J, Eftekharnezhad J and Hushmandzadeh A 1972 Central Lut reconnaissance, East Iran; Geol. Surv. Iran 22 62p.

  • Sun S S and Nesbitt R W 1977 Chemical heterogeneity of the Archean mantle composition of the bulk earth and mantle evolution; Earth Planet. Sci. Lett. 35(3) 429–448.

    Article  Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; In: Magmatism in the Ocean Basins (eds) Saunders A D and Norry M J, Geol. Soc. London Spec. Publ. 42 313–345.

  • Tarney J, Wood D A, Varet J, Saunders A D and Cann J R 1979 Nature of mantle heterogeneity in the North Atlantic: evidence from Leg 49 Basalts; In: Results of Deep Sea Drilling in the Atlantic (eds) Talwani M, Harrison C G and Hayes D E, Maurice Ewing Series, Am. Geophys. Union 2 285–301.

  • Tarney J and Weaver B L 1987 Mineralogy, petrology and geochemistry of the Scourie dykes: Petrogenesis and crystallization processes in dykes intruded at depth; In: Evolution of the Lewisian and Comparable Precambrian High Grade Terrains (eds) Park R G and Tarney J, Geol. Soc. Spec. Publ. 27 217–233.

  • Tarney J 1992 Geochemistry and significance of mafic dyke swarms in the Proterozoic; In: Proterozoic Crustal Evolution: Developments in Precambrian Geology (ed.) Condie K C, Elsevier Amst. 10 151–179.

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution, Blackwell Scientific Publication, Oxford, 312p.

    Google Scholar 

  • Taylor R G and Pollard P J 1988 Pervasive hydrothermal alteration in tin-bearing granites and implications for the evolution of ore–heating magmatic fluids; In: Recent advances in the geology of granite-related mineral deposits, Quebec (eds) Taylor R P and Strong D F, Can. Instit. Mining Metallurgy, pp. 86–95.

  • Turner S, Hawkesworth C, Gallagher K, Peate D and Mantovani M 1996 Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: Assessment of a conductive heating model and application to the Paraná; J. Geophys. Res. 101(B5) 11,503–11,518.

    Article  Google Scholar 

  • Verdel C, Wernicke B P, Ramezani J, Hassanzadeh J, Renne P R and Spell T R 2007 Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran; Geol. Soc. Am. Bull. 119(7/8) 961–977.

    Article  Google Scholar 

  • Walker R J, Morgan J W, Beary E S, Smoliar M I, Czamanske G K and Horan M F 1997 Applications of the \(^{190}\text{ Pt }{-^{186}}\text{ OS }\) isotope system to geochemistry and cosmochemistry; Geochim. Cosmochim. Acta 61(22) 4799–4808.

    Article  Google Scholar 

  • White R S and McKenzie D 1989 Magmatism at rift zones: the generation of volcanic continental margins and flood basalts; J. Geophys. Res. 94(B6) 7685–7729.

    Article  Google Scholar 

  • Whitney D L and Evans B W 2010 Abbreviations for names of rock-forming minerals; Am. Mineral. 95 185–187.

    Article  Google Scholar 

  • Winchester J A and Floyd P A 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements; Chem. Geol. 20 325–344.

    Article  Google Scholar 

  • Yu X, Lee C A, Chen L H and Zeng G 2015 Magmatic recharge in continental flood basalts: Insights from the Chifeng igneous province in Inner Mongolia; Geochem. Geophys. Geosyst. 16 2082–2096.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Arai of Kanazawa University for his comments and patient reviewing of the manuscript. The present state of the manuscript is entirely due to his help. The authors would like to acknowledge the support they received from Geological Survey of Iran during the collection of geological samples. They are also grateful to Director of GSI for permitting to carry out this work at University of Delhi. Thanks are also due to the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monireh Poshtkoohi.

Additional information

Communicated by R Bhutani.

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poshtkoohi, M., Ahmad, T. & Choudhary, A.K. Geochemistry and petrogenesis of Biabanak-Bafq mafic magmatism: Implication for the evolution of central Iranian terrane. J Earth Syst Sci 127, 72 (2018). https://doi.org/10.1007/s12040-018-0969-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-0969-5

Keywords

Navigation