Episodic crustal growth in the Bundelkhand craton of central India shield: Constraints from petrogenesis of the tonalite–trondhjemite–granodiorite gneisses and K-rich granites of Bundelkhand tectonic zone

  • Hiredya Chauhan
  • Ashima Saikia
  • Talat Ahmad


Tonalite–trondhjemite–granodiorite gneisses (TTG) and K-rich granites are extensively exposed in the Mesoarchean to Paleoproterozoic Bundelkhand craton of central India. The TTGs rocks are coarse- grained with biotite, plagioclase feldspar, K-feldspar and amphibole as major constituent phases. The major minerals constituting the K-rich granites are K-feldspar, plagioclase feldspar and biotite. They are also medium to coarse grained. Mineral chemical studies show that the amphiboles of TTG are calcic amphibole hastingsite, plagioclase feldspars are mostly of oligoclase composition, K-feldspars are near pure end members and biotites are solid solutions between annite and siderophyllite components. The K-rich granites have biotites of siderophyllite–annite composition similar to those of TTGs, plagioclase feldspars are oligoclase in composition, potassic feldspars have \(\hbox {X}_{\mathrm{K}}\) ranging from 0.97 to 0.99 and are devoid of any amphibole. The tonalite–trondhjemite–granodiorite gneiss samples have high \(\hbox {SiO}_{2}\) (64.17–74.52 wt%), \(\hbox {Na}_{2}\hbox {O}\) (3.11–5.90 wt%), low Mg# (30–47) and HREE contents, with moderate \((\hbox {La/Yb})_{\mathrm{CN}}\) values (14.7–33.50) and Sr/Y ratios (4.85–98.7). These geochemical characteristics suggest formation of the TTG by partial melting of the hydrous basaltic crust at pressures and depths where garnet and amphibole were stable phases in the Paleo-Mesoarchean. The K-rich granite samples show high \(\hbox {SiO}_{2}\) (64.72–76.73 wt%), \(\hbox {K}_{2}\hbox {O}\) (4.31–5.42), low \(\hbox {Na}_{2}\hbox {O}\) (2.75–3.31 wt%), Mg# (24–40) and HREE contents, with moderate to high \((\hbox {La/Yb})_{\mathrm{CN}}\) values (9.26–29.75) and Sr/Y ratios (1.52–24). They differ from their TTG in having elevated concentrations of incompatible elements like K, Zr, Th, and REE. These geochemical features indicate formation of the K-granites by anhydrous partial melting of the Paleo-Mesoarchean TTG or mafic crustal materials in an extensional regime. Combined with previous studies it is interpreted that two stages of continental accretion (at 3.59–3.33 and 3.2–3.0 Ga) and reworking (at 2.5–1.9 Ga) occurred in the Bundelkhand craton from Archaean to Paleoproterozoic.


Tonalite–trondjemite–granodiorite gneiss K-rich granites Bundelkhand craton subduction continental crust central Indian shield 



Ashima Saikia acknowledges R&D grant for promotion of research, University of Delhi and CSIR Grant vide Project No. 24(0317)/12/EMR-II for carrying out this work.


  1. Abbott D and Mooney W 1995 The structural and geochemical evolution of the continental crust: Support for the oceanic plateau model of continental growth; Rev. Geophys. 33(S1) 231–242.CrossRefGoogle Scholar
  2. Abdel-Rahman A F M 1994 Nature of biotites from alkaline, calc-alkaline and peraluminous magmas; J. Petrol. 35 525–541.CrossRefGoogle Scholar
  3. Absar N, Raza M, Roy M, Naqvi S M and Roy A K 2009 Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, central India: Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group; Precamb. Res. 168(3) 313–329.CrossRefGoogle Scholar
  4. Arndt N T 2013 The formation and evolution of the continental crust; Geochem. Perspec. 2(3) 405.CrossRefGoogle Scholar
  5. Atherton M P and Petford N 1993 Generation of sodium-rich magmas from newly underplated basaltic crust; Nature 362 144–146.CrossRefGoogle Scholar
  6. Balaram V, Saxena V K, Manikyamba C and Ramesh S L 1990 Determination of rare earth elements in Japanese rock standards by inductively coupled plasma mass spectrometry; Atomic Spectroscopy 11(1) 19–23.Google Scholar
  7. Barker F 1979 Trondhjemites: Definition, environment and hypotheses of origin; In: Trondhjemites, Dacites and Related Rocks (ed.) Barker F; Elsevier, Amsterdam, pp. 1–12.Google Scholar
  8. Basu A K 1986 Geology of parts of the Brundelkhand granite massif central India; Rec. Geol. Surv. India 117(2) 61–124.Google Scholar
  9. Basu A K 2001 Some characteristics of the Precambrian crust in the northern part of central India; Geol. Surv. India Spec. Publ. 55 181–204.Google Scholar
  10. Bhattacharya A R and Singh S P 2013 Proterozoic crustal scale shearing in the Bundelkhand massif with special reference to quartz reefs; J. Geol. Soc. India 82(5) 474.CrossRefGoogle Scholar
  11. Blundy J D and Holland T J B 1990 Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer; Contrib. Mineral. Petrol. 104 208–224.CrossRefGoogle Scholar
  12. Champion D C and Sheraton J W 1997 Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: Implications for crustal growth processes; Precamb. Res. 83(1–3) 109–132.CrossRefGoogle Scholar
  13. Champion D C and Smithies R H 1999 Archaean granites of the Yilgarn and Pilbara cratons, western Australia: Secular changes; In: The Origin of Granites and Related Rocks – Fourth Hutton Symposium Abstracts Doc (ed.) Barbarin B, BRGM 290, 137p.Google Scholar
  14. Condie K C 2005 TTGs and adakites: Are they both slab melts? Lithos 80(1) 33–44.CrossRefGoogle Scholar
  15. Crawford A R 1970 The Precambrian geochronology of Rajasthan and Bundelkhand, northern India; Can. J. Earth Sci. 7(1) 91–110.CrossRefGoogle Scholar
  16. Deb M, Thorpe R and Krstic D 2002 Hindoli group of rocks in the eastern fringe of the Aravalli–Delhi Orogenic Belt – Archean Secondary Greenstone Belt or Proterozoic supracrustals? Gondwana Res. 5(4) 879–883.CrossRefGoogle Scholar
  17. Deer W A, Howie R A and Zussman J 1992 An introduction to the rock forming minerals; ELBS Publication, UK, 696p.Google Scholar
  18. Drummond M S and Defant M J 1990 A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons; J. Geophys. Res.: Solid Earth 95(B13) 21503–21521.CrossRefGoogle Scholar
  19. Ernst R and Bleeker W 2010 Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: Significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present; Can. J. Earth Sci. 47(5) 695–739.CrossRefGoogle Scholar
  20. Ernst R E, Wingate M T D, Buchan K L and Li Z X 2008 Global record of 1600–700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents; Precamb. Res. 160(1) 159–178.CrossRefGoogle Scholar
  21. Ghosh J G 2004 3.56 Ga tonalite in the central part of the Bastar craton, India: Oldest Indian date; J. Asian Earth Sci. 23(3) 359–364.CrossRefGoogle Scholar
  22. Foley S 2008 A trace element perspective on Archean crust formation and on the presence or absence of Archean subduction; Geol. Soc. Am. Spec. Papers 440 31–50.Google Scholar
  23. Foley S, Tiepolo M and Vannucci R 2002 Growth of early continental crust controlled by melting of amphibolite in subduction zones; Nature 417(6891) 837–840.CrossRefGoogle Scholar
  24. Haldar D and Ghosh R N 2000 Eruption of Bijawar lava: An example of Precambrian volcanicity under stable cratonic conditions; Spec. Publ. Geol. Surv. India 57 151–170.Google Scholar
  25. Halla J, van Hunen J, Heilimo E and Hölttä P 2009 Geochemical and numerical constraints on Neoarchean plate tectonics; Precamb. Res. 174(1) 155–162.CrossRefGoogle Scholar
  26. Hammerstrom J M and Zen E-An 1986 Aluminium in hornblende: An empirical igneous geobarometer; Am. Mineral. 71 1297–1313.Google Scholar
  27. Heilimo E, Halla J and Hölttä P 2010 Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland); Lithos 115(1) 27–39.CrossRefGoogle Scholar
  28. Hollister L S, Grissom G C, Peters E K, Stowell H H and Sisson V B 1987 Confirmation of the empirical correlation of al in hornblende with pressure of solidification of clac–alkaline plutons; Am. Mineral. 72 231–239.Google Scholar
  29. Huang H, Niu Y, Nowell G, Zhao Z, Yu X, Zhu D C, Mo X and Ding S 2014 Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism; Chem. Geol. 370 1–18.CrossRefGoogle Scholar
  30. Irvine T N and Baragar W R A 1971 A guide to the geochemical classification of the common volcanic rocks; Can. J. Earth Sci. 8 523–548.CrossRefGoogle Scholar
  31. Jackson M D, Gallagher K, Petford N and Cheadle M J 2005 Towards a coupled physical and chemical model for tonalite–trondhjemite–granodiorite magma formation; Lithos 79(1) 43–60.CrossRefGoogle Scholar
  32. Jayananda M, Chardon D, Peucat J J and Capdevila R 2006 2.61 Ga K-rich granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints; Precamb. Res. 150(1) 1–26.CrossRefGoogle Scholar
  33. Jayananda M, Chardon D, Peucat J J and Fanning C M 2015 Paleo-to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, southern India: Constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes; Precamb. Res. 268 295–322.CrossRefGoogle Scholar
  34. Johnson T E, Brown M, Gardiner N J, Kirkland C L and Smithies R H 2017 Earth’s first stable continents did not form by subduction; Nature 543 239–242.CrossRefGoogle Scholar
  35. Joshi K B, Bhattacharjee J, Rai G, Halla J, Ahmad T, Kurhila M, Heilimo E and Choudhary A K 2016 The diversification of granitoids and plate tectonic implications at the Archaean–Proterozoic boundary in the Bundelkhand Craton, central India; Geol. Soc. London Spec. Publ. 449 123–157.CrossRefGoogle Scholar
  36. Kaur P, Zeh A and Chaudhri N 2014 Characterisation and U–Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand craton, northern India; Precamb. Res. 255 236–244.CrossRefGoogle Scholar
  37. Kaur P, Zeh A, Chaudhri N and Eliyas N 2016 Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U–Pb zircon–monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids; Precamb. Res. 281 384–413.CrossRefGoogle Scholar
  38. Kay R W and Kay S M 1993 Delamination and delamination magmatism; Tectonophys. 219(1–3) 177–189.CrossRefGoogle Scholar
  39. Kovalenko A, Clemens J D and Savatenkov V 2005 Petrogenetic constraints for the genesis of Archaean sanukitoid suites: Geochemistry and isotopic evidence from Karelia, Baltic Shield; Lithos 79(1) 147–160.CrossRefGoogle Scholar
  40. Kumar S, Yi K, Raju K, Pathak M, Kim N and Lee T H 2011 SHRIMP U–Pb geochronology of felsic magmatic lithounits in the central part of Bundelkhand Craton, central India; In: 7th Hutton Symposium on Granites and Related Rocks, Avila, Spain, 83.Google Scholar
  41. Laurent O, Martin H, Moyen J F and Doucelance R 2014 The diversity and evolution of late-Archean granitoids: Evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5 Ga; Lithos 205 208–235.CrossRefGoogle Scholar
  42. Leake B E, Woolley A R, Arps C E S and Birch W D 1997 Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association commission on new mineral names; Min. Mag. 61 295–321.CrossRefGoogle Scholar
  43. Lobach-Zhuchenko S B, Rollinson H, Chekulaev V P, Savatenkov V M, Kovalenko A V, Martin H, Guseva N S and Arestova N A 2008 Petrology of a Late Archaean, highly potassic, sanukitoid pluton from the Baltic Shield: Insights into Late Archaean mantle metasomatism; J. Petrol. 49(3) 393–420.CrossRefGoogle Scholar
  44. Macpherson C G, Dreher S T and Thirlwall M F 2006 Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines; Earth Planet. Sci. Lett. 243(3) 581–593.CrossRefGoogle Scholar
  45. McDonough W F and Sun S S 1995 The composition of the Earth; Chem. Geol. 120(3–4) 223–253.CrossRefGoogle Scholar
  46. Malviya V P, Arima M, Pati J K and Kaneko Y 2004 First report of metamorphosed pillow lava in central part of Bundelkhand craton – an island arc setting of possible late Archaean age; Gondwana Res. 7 1338–1340.Google Scholar
  47. Malviya V P, Arima M and Kaneko Y 2006 Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in the Mauranipur area: Subduction related volcanism in the Archean Bundelkhand craton, central India; J. Min. Petrol. Sci. 101(4) 199–217.CrossRefGoogle Scholar
  48. Maniar P D and Piccoli P M 1989 Tectonic discrimination of granitoids; GSA Bull. 101 635–643.CrossRefGoogle Scholar
  49. Manya S, Maboko M A H and Nakamura E 2007 Geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma–Mara Greenstone Belt, Northern Tanzania: Possible evidence for Neoarchaean ridge subduction? Precamb. Res. 159 241–259.CrossRefGoogle Scholar
  50. Martin H 1999 Adakitic magmas: Modern analogues of Archaean granitoids; Lithos 46(3) 411–429.CrossRefGoogle Scholar
  51. Martin H and Moyen J F 2005 The Archaean–Proterozoic transition: Sanukitoid and Closepet type magmatism; Min. Soc. Poland Spec. Papers 26 57–67.Google Scholar
  52. Martin H, Moyen J F, Guitreau M, Toft J B and Pennec J L L 2014 Why Archean TTG cannot be generated by MORB melting in subduction zones; Lithos 198–199 1–13.CrossRefGoogle Scholar
  53. Meert J G, Pandit M K, Pradhan V R and Kamenov G 2011 Preliminary report on the paleomagnetism of 1.88 Ga dykes from the Bastar and Dharwar cratons, peninsular India; Gondwana Res. 20(2) 335–343.CrossRefGoogle Scholar
  54. Miller C F, McDowell S M and Mapes R W 2003 Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance; Geology 31(6) 529–532.CrossRefGoogle Scholar
  55. Mohan M R, Singh S P, Santosh M, Siddiqui M A and Balaram V 2012 TTG suite from the Bundelkhand Craton, central India: Geochemistry, petrogenesis and implications for Archean crustal evolution; J. Asian Earth Sci. 58 38–50.CrossRefGoogle Scholar
  56. Mondal M E A, Goswami J N, Deomurari M P and Sharma K K 2002 Ion microprobe \(^{207}\) \(\text{ Pb }/^{206}\text{ Pb }\) ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand–Aravalli protocontinent; Precamb. Res. 117(1) 85–100.CrossRefGoogle Scholar
  57. Mondal M E A, Sharma K K, Rahman A and Goswami J N 1998 Ion microprobe \(^{207}\text{ Pb }/^{206}\)Pb zircon ages for gneiss-granitoid rocks from Bundelkhand massif: Evidence for Archaean components; Curr. Sci. 74 70–74.Google Scholar
  58. Mondal M E A and Zainuddin S M 1996 Evolution of the Archean–Paleoproterozoic Bundelkhand Massif, central India – evidence from granitoid geochemistry; Terra Nova 8(6) 532–539.CrossRefGoogle Scholar
  59. Mo X, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S and Ke S 2008 Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet; Chem. Geol. 250(1) 49–67.CrossRefGoogle Scholar
  60. Moyen J F 2009 High Sr/Y and La/Yb ratios: The meaning of the ‘adakitic signature’; Lithos 112(3) 556–574.CrossRefGoogle Scholar
  61. Moyen J F 2011 The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth; Lithos 123(1) 21–36.CrossRefGoogle Scholar
  62. Moyen J F and Martin H 2012 Forty years of TTG research; Lithos 148 312–336.CrossRefGoogle Scholar
  63. Moyen J F, Martin H, Jayananda M and Auvray B 2003 Late Archaean granites: A typology based on the Dharwar Craton (India); Precamb. Res. 127(1) 103–123.CrossRefGoogle Scholar
  64. Moyen J F, Nédélec A, Martin H and Jayananda M 2003 Syntectonic granite emplacement at different structural levels: The Closepet granite, South India; J. Struct. Geol. 25(4) 611–631.CrossRefGoogle Scholar
  65. Naqvi S M and Rogers J J W 1987 Precambrian Geology of India; Oxford University Press, New York, 223p.Google Scholar
  66. Niu Y L, Mo X, Dong G, Zhao Z, Hou Z, Zhou S and Ke S 2007 Continental collision zones are primary sites of net continental crustal growth: Evidence from the Linzizong volcanic succession in southern Tibet; EOS Trans. Am. Geophys. Union 88(52) (Fall Meeting, Supplement Abstract V34A-01).Google Scholar
  67. Niu Y and O’Hara M J 2009 MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle; Lithos 112(1) 1–17.CrossRefGoogle Scholar
  68. Niu Y, Zhao Z, Zhu D C and Mo X 2013 Continental collision zones are primary sites for net continental crust growth – a testable hypothesis; Earth-Sci. Rev. 127 96–110.CrossRefGoogle Scholar
  69. Nutman A P, Friend C R, Horie K and Hidaka H 2007 The Itsaq gneiss complex of southern west greenland and the construction of eoarchaean Crust at convergent pate boundaries; Dev. Precamb. Geol. 15 187–218.CrossRefGoogle Scholar
  70. O’connor J T 1965 A classification for quartz-rich igneous rocks based on feldspar ratios; US Geol. Sur. Professional Paper B 525 79–84.Google Scholar
  71. Oliveria M A, Dall’Agnol R and Scaillet B 2010 Petrological constraints on crystallization conditions of Mesoarchean Sanukitoid rocks, southeastern Amazonian Craton, Brazil; J. Petrol. 51 2121–2148.Google Scholar
  72. Pati J K 1999 Specialized thematic study of older enclaves (migmatites, gneisses and supracrustals) within the Bundelkhand Granitoid Complex (BUGC); Geol. Surv. India, (NR), Progress Report (FST 1997–1998), 25.Google Scholar
  73. Pati J K, Patel S C, Pruseth K L, Malviya V P, Arima M, Raju S, Pati P and Prakash K 2007 Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, central India and their implications; J. Earth Syst. Sci. 116(6) 497–510.CrossRefGoogle Scholar
  74. Pati J K, Raju S, Mamgain V D and Shanker R 1997 Gold mineralization in parts of Bundelkhand granitoid complex (BGC); Geol. Soc. India 50(5) 601–606.Google Scholar
  75. Patiño-Douce A E 1996 Effects of pressure and \(\text{ H }_{2}\text{ O }\) content on the composition of primary crustal melts; Trans. R. Soc. Edinburgh: Earth Sci. 87 11–21.CrossRefGoogle Scholar
  76. Patiño-Douce A E 2005 Vapour absent melting of tonalite at 15–32 kbar; J. Petrol. 46 275–290.CrossRefGoogle Scholar
  77. Patiño-Douce A E 1999 What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Understanding granites: Integrating new and classical techniques (eds) Castro A, Fernandez C and Vigneressese J L, Geol. Soc. London Spec. Publ. 168 55–75.Google Scholar
  78. Pearce J A, Harris B W and Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25 956–983.CrossRefGoogle Scholar
  79. Pearson D G, Parman S W and Nowell G M 2007 A link between large mantle melting events and continent growth seen in osmium isotopes; Nature 449(7159) 202–205.CrossRefGoogle Scholar
  80. Peccerillo A and Taylor S R 1976 Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey; Contrib. Mineral. Petrol. 58 63–81.CrossRefGoogle Scholar
  81. Pradhan V R, Meert J G, Pandit M K, Kamenov G, Gregory L C and Malone S J 2009 India’s changing place in global Proterozoic reconstructions: A review of geochronologic constraints and Paleomagnetic poles from the Dharwar, Bundelkhand and Marwar cratons; J. Geodyn. 50(3–4) 224–242.Google Scholar
  82. Pradhan V R, Meert J G, Pandit M K, Kamenov G and Mondal M E A 2012 Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic evolution and paleographic reconstructions; Precamb. Res. 198–199 51–76.CrossRefGoogle Scholar
  83. Purohit K K, Mukherjee P K, Saini N K, Khanna P P and Rathi M S 2006 Geochemical Survey of stream sediments from upper parts of Alaknanda, Mandakini, Bhilangana and Bhagirathi Catchments, Garhwal Himalaya; Himalayan Geol. 27(1) 31–39.Google Scholar
  84. Radhakrishna T, Chandra R, Srivastava A K and Balasubramonian G 2013 Central/eastern Indian Bundelkhand and Bastar cratons in the Palaeoproterozoic supercontinental reconstructions: A palaeomagnetic perspective; Precamb. Res. 226 91–104.CrossRefGoogle Scholar
  85. Ramakrishnan M and Vaidyanadhan R 2010 Geology of India; Geological Society of India Publication , 428p.Google Scholar
  86. Rao J M, Rao G P, Widdowson M and Kelley S P 2005 Evolution of Proterozoic mafic dyke swarms of the Bundelkhand granite massif, central India; Curr. Sci. 88(3) 502–506.Google Scholar
  87. Rapp R P, Watson E B and Miller C F 1991 Partial melting of amphibolites/eclogite and the origin of Archean trondhjemites and tonalities; Precamb. Res. 51(1–4) 1–25.CrossRefGoogle Scholar
  88. Rapp R P, Shimizu N, Norman M D and Applegate G S 1999 Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa; Chem. Geol. 160(4) 335–356.CrossRefGoogle Scholar
  89. Roy A B and Kröner A 1996 Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton, northwestern Indian shield; Geol. Mag. 133(03) 333–342.CrossRefGoogle Scholar
  90. Rutter M J and Wyllie P J 1988 Melting of vapour-absent tonalite at 10 kbar to simulate dehydration–melting in the deep crust; Nature 331(6152) 159–160.CrossRefGoogle Scholar
  91. Rushmer T and Jackson M 2008 Impact of melt segregation on tonalite–trondhjemite–granodiorite (TTG) petrogenesis; Trans. Roy. Soc. Edinburgh: Earth Sci. 97(04) 325–336.CrossRefGoogle Scholar
  92. Saha L, Pant N C, Pati J K, Upadhyay D, Berndt J, Bhattacharya A and Satynarayanan M 2011 Neoarchean high-pressure margarite–phengitic muscovite–chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite–chlorite schists from the Bundelkhand craton, north central India; Contrib. Mineral. Petrol. 161(4) 511–530.CrossRefGoogle Scholar
  93. Saha L, Frei D, Gerdes A, Pati J K, Sarkar S, Patole V, Bhandari A and Nasipuri P 2016 Crustal geodynamics from the Archaean Bundelkhand Craton, India: Constraints from zircon U–Pb–Hf isotope studies; Geol. Mag. 153(01) 179–192.CrossRefGoogle Scholar
  94. Saini N K, Mukherjee P K, Rathi M S, Khanna P P and Purohit K K 1998 A new geochemical reference sample of granite (DG-H) from Dalhousie, Himachal Himalaya; J. Geol. Soc. India 52 603–606.Google Scholar
  95. Saini N K, Mukherjee P K, Rathi M S and Khanna P P 2000 Evaluation of energy-dispersive X-ray fluorescence spectrometry in the rapid analysis of silicate rocks using pressed powder pellets; X-Ray Spectrometry 29(2) 166–172.CrossRefGoogle Scholar
  96. Saini N K, Mukherjee P K, Khanna P P and Purohit K K 2007 A proposed amphibolite reference rock sample (AM-H) from Himachal Pradesh; J. Geol. Soc. India 69 799–802.Google Scholar
  97. Sarkar A, Paul D K and Potts P J 1996 Geochronology and geochemistry of the Mid-Archaean trondhjemitic gneisses from the Bundelkhand craton, central India; Recent Res. Geol. 16 76–92.Google Scholar
  98. Sarkar A, Trivedi J R, Gopalan K, Singh P N, Das A K and Paul D K 1984 Rb–Sr geochronology of Bundelkhand granitic complex in the Jhansi–Babina–Talbehat sector, UP, India; Indian J. Earth Sci., CEISM Seminar Volume, 64–72.Google Scholar
  99. Sarkar A, Ghosh S, Singhai R K and Gupta S N 1997 Rb–Sr geochronology of the Dargawan sill: Constraint on the age of the type Bijawar sequence of central India; In: International Conference on Isotopes in Solar System 5 100–101.Google Scholar
  100. Sharma K K 1998 Geological evolution and crustal growth of Bundelkhand craton and its relict in the surrounding regions, North Indian Shield; In: The Indian Precambrian, Paliwal B S (ed). Scientific Publishers, Jodhpur, 1593 33–43.Google Scholar
  101. Sharma R S 2009 Cratons of the Indian shield. Springer Berlin Heidelberg, pp. 41–115.Google Scholar
  102. Sharma K K and Rahman A 2000 The Early Archaean–Paleoproterozoic crustal growth of the Bundelkhand craton, northern Indian shield; In: Crustal Evolution and Metallogeny in the Northwestern Indian Shield, Narosa Publishing House, New Delhi, pp. 51–72.Google Scholar
  103. Sharma K K and Rahman A 1995 Occurrence and petrogenesis of Loda Pahar trondhjemitic gneiss from Bundelkhand craton, central India: Remnant of an early crust; Curr. Sci. 69 613–617.Google Scholar
  104. Singh S P, Singh M M, Srivastava G S and Basu A K 2007 Crustal evolution in Bundelkhand area, central India; J. Himal. Geol. 28(2) 79–101.Google Scholar
  105. Singh V K and Slabunov A 2015 The central Bundelkhand Archaean greenstone complex, Bundelkhand craton, central India: Geology, composition, and geochronology of supracrustal rocks; Intern. Geol. Rev. 57(11–12) 1349–1364.CrossRefGoogle Scholar
  106. Singh V K and Slabunov A 2016 Two types of Archaean supracrustal belts in the Bundelkhand craton, India: Geology, geochemistry, age and implication for craton crustal evolution; J. Geol. Soc. India 88(5) 539–548.CrossRefGoogle Scholar
  107. Sizova E, Gerya T and Brown M 2014 Contrasting styles of Phanerozoic and Precambrian continental collision; Gondwana Res. 25(2) 522–545.CrossRefGoogle Scholar
  108. Sizova E, Gerya T, Stüwe K and Brown M 2015 Generation of felsic crust in the Archean: A geodynamic modeling perspective; Precamb. Res. 271 198–224.CrossRefGoogle Scholar
  109. Skjerlie K P and Johnston A D 1993 Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: Implications for the generation of anorogenic granites; J. Petrol. 34(4) 785–815.CrossRefGoogle Scholar
  110. Smithies R H 2000 The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoicadakite; Earth Planet. Sci. Lett. 182(1) 115–125.CrossRefGoogle Scholar
  111. Smithies R H and Champion D 2000 The archaean high-Mg diorite suite: Links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth; J. Petrol. 41 1653–1671CrossRefGoogle Scholar
  112. Smithies R H, Champion D C and Van Kranendonk M J 2009 Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt; Earth Planet. Sci. Lett. 281(3) 298–306.CrossRefGoogle Scholar
  113. Smithies R H 2002 Archaean boninite-like rocks in an intracratonic setting; Earth Planet. Sci. Lett. 197(1) 19–34.CrossRefGoogle Scholar
  114. Speer J A 1984 Micas in igneous rocks; In: Mineralogical, Society of America, Rev. Miner. 13 299–356.Google Scholar
  115. Stein M and Hofmann A W 1994 Mantle plumes and episodic crustal growth, Nature 372(6501) 63–68.CrossRefGoogle Scholar
  116. Sun S S and McDonough W S 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; Geol. Soc. London, Spec. Publ. 42(1) 313–345.CrossRefGoogle Scholar
  117. Sylvester P J 1994 Archean granite plutons; Dev. Precamb. Geol. 11 261–314.CrossRefGoogle Scholar
  118. Taylor S R 1967 The origin and growth of continents; Tectonophys. 4(1) 17–34.CrossRefGoogle Scholar
  119. Taylor S R 1977 Island arc models and the composition of the continental crust; In: Island arcs, deep sea trenches and back-arc basins (ed.) M Talwani, American Geophysical Union, Washington, DC, pp. 325–335.Google Scholar
  120. Thompson A B 1996 Fertility of crustal rocks during anatexis; Trans. Roy. Soc. Edinburgh: Earth Sci. 87 1–10.CrossRefGoogle Scholar
  121. Upadhyay D, Chattopadhyay S, Kooijiman E, Mezger K and Berndt J 2014 Magmatic and metamorphic history of Paleoarchean tonalite-trondhjemite-granodiorite suite from the Singhbhum Craton, eastern India; Precamb. Res. 252 180–190.CrossRefGoogle Scholar
  122. Verma S K, Verma S P, Oliveira E P, Singh V K and Moreno J A 2016 LA-SF-ICP-MS zircon U–Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India; J. Asian Earth Sci. 118 125–137.CrossRefGoogle Scholar
  123. Wang Q, McDermott F, Xu J F, Bellon H and Zhu Y T 2005 Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting; Geology 33(6) 465–468.CrossRefGoogle Scholar
  124. Watkins J M, Clemens J D and Treloar P J 2007 Archaean TTGs as sources of younger granitic magmas: Melting of sodic metatonalites at 0.6–1.2 GPa; Contrib. Mineral. Petrol. 154(1) 91–110.CrossRefGoogle Scholar
  125. Watson E B and Harrison T M 1983 Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types; Earth Planet. Sci. Lett. 64(2) 295–304.CrossRefGoogle Scholar
  126. Wolf M B and Wyllie P J 1994 Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time; Contrib. Mineral. Petrol. 115(4) 369–383.CrossRefGoogle Scholar
  127. Zhao G, Wilde S A, Cawood P A and Sun M 2001 Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P–T path constraints and tectonic evolution; Precamb. Res. 107(1) 45–73.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.University of DelhiDelhiIndia

Personalised recommendations