Skip to main content
Log in

Characteristics of surface ozone in Agra, a sub-urban site in Indo-Gangetic Plain

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

In the present study, measurements of surface ozone (\(\hbox {O}_{3}\)) and its precursors (NO and \(\hbox {NO}_{2}\)) were carried out at a sub-urban site of Agra (\(27{^{\circ }}10'\hbox {N}\), \(78{^{\circ }}05'\hbox {E}\)), India during May 2012–May 2013. During the study period, average concentrations of \(\hbox {O}_{3}\), NO, and \(\hbox {NO}_{2}\) were \(39.6 \pm 25.3\), \(0.8 \pm 0.8\) and \(9.1 \pm 6.6 \, \hbox {ppb}\), respectively. \(\hbox {O}_{3}\) showed distinct seasonal variation in peak value of diurnal variation: summer \({>}\) post-monsoon \({>}\) winter \({>}\) monsoon. However, \(\hbox {NO}_{2}\) showed highest levels in winter and lowest in monsoon. The average positive rate of change of \(\hbox {O}_{3}\) (08:00–11:00 hr) was highest in April (16.3 ppb/hr) and lowest in August (1.1 ppb/hr), while average negative rate of change of \(\hbox {O}_{3}\) (17:00–19:00 hr) was highest in December (–13.2 ppb/hr) and lowest in July (–1.1 ppb/hr). An attempt was made to identify the \(\hbox {VOC--NO}_{\mathrm{x}}\) sensitivity of the site using \(\hbox {O}_{3}/\hbox {HNO}_{3}\) ratio as photochemical indicator. Most of the days this ratio was above the threshold value (12–16), which suggests \(\hbox {NO}_{\mathrm{x}}\) sensitivity of the site. The episodic event of ozone was characterized through meteorological parameters and precursors concentration. Fine particles (\(\hbox {PM}_{2.5}\)) cause loss of ozone through heterogeneous reactions on their surface and reduction in solar radiation. In the study, statistical analyses were used to estimate the amount of ozone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahammed Y N, Reddy R R, Gopal K R, Narasimhulu K, Basha D B, Reddy L S S and Rao T V R 2006 Seasonal variation of surface ozone and its precursor gases during 2001–2003, measured at Anantapur (\(14.62^{\circ } \rm{N}\)), a semi-arid site in India; Atmos. Res. 80 151–164.

    Google Scholar 

  • Aneja V P, Kim D and Chameides W L 1997 Trends and analysis of ambient NO, NO\(_{\rm{y}}\), CO, and ozone concentrations in Raleigh, North Carolina; Chemosphere 34 611–623, https://doi.org/10.1016/S0045-6535(96)00393-1.

  • Beevers S D, Westmoreland E, Jong M C, Williams M L and Carslaw D C 2012 Trends in NO\(_{\rm{x}}\) and \(\rm{NO}_{2}\) emissions from road traffic in Great Britain; Atmos. Environ. 54 107–116.

    Article  Google Scholar 

  • Beig G and Ali K 2006 Behavior of boundary layer ozone and its precursors over a great alluvial plain of the world: Indo-Gangetic plains; Geophys. Res. Lett. 33 L24813.

  • Bhuyan P K, Bharali C, Pathak B and Kalita G 2014 The role of precursor gases and meteorology on temporal evolution of \(\rm{O}_{3}\) at a tropical location in northeast India; Environ. Sci. Pollut. Res., https://doi.org/10.1007/s11356-014-2587-3.

  • Bishoi B, Prakash A and Jain V K 2009 A comparative study of air quality index based on factor analysis and US-EPA methods for an urban environment; Aerosol Air Qual. Res. 9 1–17.

    Google Scholar 

  • Bond W D, Zhang R, Tie X, Brasseur G, Huffines G, Orville R E and Boccippio D J 2001 \(\rm{NO}_{\rm{x}}\) production by lightning over the continental United States; J. Geophys. Res. 106 27701–27710.

    Article  Google Scholar 

  • Castro T, Madronich S, Rivale S, Muhlia A and Mar B 2001 The influence of aerosols on photochemical smog in Mexico City; Atmos. Environ. 35 1765–1772.

    Article  Google Scholar 

  • Central Pollution Control Board (CPCB) The Gazette of India, National Ambient Air Quality Standards, New Delhi 2009.

  • Cetin E, Odabasi M and Seyfioglu R 2003 Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery; Sci. Total Environ. 312(1) 103–112.

    Article  Google Scholar 

  • Clements N, Eav J, Xie M, Hannigan M P, Miller S L, Navidi W, Peel J L, Schauer J J, Shafer M M and Milford J B 2014 Concentrations and source insights for trace elements in fine and coarse particulate matter; Atmos. Environ. 89 373–381.

    Article  Google Scholar 

  • David L M and Nair P R 2011 Diurnal and seasonal variability of surface ozone and NO\(_{\rm{x}}\) at a tropical coastal site: Association with mesoscale and synoptic meteorological conditions; J. Geophys. Res. 116 D10303, https://doi.org/10.1029/2010JD015076.

  • Debaje S B, Jeyakumar S J, Ganesan K, Jadhav D B and Seetaramayya P 2003 Surface ozone measurements at tropical rural coastal station Tranquebar, India; Atmos. Environ. 37 4911–4916.

    Article  Google Scholar 

  • Dickerson R R, Kondragunta S, Stenchikov G, Civerolo K L, Doddridge B G and Holben B N 1997 The impact of aerosols on solar ultraviolet radiation and photochemical Smog; Science 278(5339) 827–830.

    Article  Google Scholar 

  • Elminir H K 2005 Dependence of urban air pollutants on meteorology; Sci. Total Environ. 350 225–237, https://doi.org/10.1016/j.scitotenv.2005.01.043.

  • Fuhrer J 2009 Ozone risk for crops and pastures in present and future climates; Naturwissenschaften 96 173–194.

    Article  Google Scholar 

  • Fujita E M, Croes B E, Bennett C L, Lawson D R, Lurmann F W and Main H H 1992 Comparison of emission and ambient concentration ratios of CO, NO\(_{\rm{x}}\), and NMOG in California’s South Coast Air Basin; J. Air Waste Manag. Assoc. 42 264–276.

    Article  Google Scholar 

  • Gurjar B R, Jain A, Sharma A, Agarwal A, Gupta P, Nagpure A S and Lelieveld J 2010 Human health risks in megacities due to air pollution; Atmos. Environ. 44(36) 4606–4613.

    Article  Google Scholar 

  • Gopal K R, Lingaswamy A P, Arafath S M, Balakrishnaiah G, Kumari S P, Devi K U, Reddy N S K, Reddy K R O, Reddy R R, Azeem P A and Lal S 2014 Seasonal heterogeneity in ozone and its precursors (\(\rm{NO}_{\rm{x}}\)) by in-situ and model observations on semi-arid station in Anantapur (AP), south India; Atmos. Environ. 84 294–306.

  • Im U, Poupkou A, Incecik S, Markakis K, Kindap T, Unal A, Melas D, Yenigun O, Topcu S, Odman MT, Tayanc M and Guler M 2011 The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul; Sci. Total Environ. 409 1255–1265.

    Article  Google Scholar 

  • IPCC 2007 The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, USA.

  • Jacob D J 2000 Heterogeneous chemistry and tropospheric ozone; Atmos. Environ. 34 2131–2159.

    Article  Google Scholar 

  • Jacobson M Z 1998 Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed; J. Geophys. Res. 103 10593–10604.

  • Jonson J E, Simpson D, Fagerli H and Solberg S 2006 Can we explain the trends in European ozone levels?; Atmos. Chem. Phys. 6 51–66.

    Article  Google Scholar 

  • Kulkarni P S, Bortoli D, Domingues A and Silva A M 2016 Surface ozone variability and trend over urban and suburban sites in Portugal; Aerosol Air Qual. Res. 16 138–152, https://doi.org/10.4209/aaqr.2015.02.0113.

  • Kumar R, Gupta A, Kumari K M and Srivastava S S 2004 Simultaneous measurements of \(\rm{SO}_{2}\), \(\rm{NO}_{2}\), \(\rm{HNO}_{3}\) and \(\rm{NH}_{3}\): Seasonal and spatial variations; Curr. Sci. 87(8) 1108–1115.

    Google Scholar 

  • Kumar U, Prakash A and Jain V K 2008 A photochemical modelling approach to investigate \(\rm{O}_{3}\) sensitivity to NO\(_{\rm{x}}\) and VOCs in the urban atmosphere of Delhi; Aerosol Air Qual. Res. 8 147–159.

    Google Scholar 

  • Lai T L, Talbot R and Mao H 2011 An investigation of two highest ozone episodes during the last decade in New England; Atmosphere 3(1) 59–86.

    Article  Google Scholar 

  • Lal S, Naja M and Subbaraya B H 2000 Seasonal variations in surface ozone and its precursors over an urban site in India; Atmos. Environ. 34 2713–2724.

    Article  Google Scholar 

  • Lal S, Sahu L K, Gupta S, Srivastava S, Modh K S, Venkataramani S and Rajesh T A 2008 Emission characteristic of ozone related trace gases at a semi-urban site in the Indo-Gangetic Plain using intercorrelations; J. Atmos. Chem. 60 189–204.

    Article  Google Scholar 

  • Lamarque J F, Brasseur G P, Hess P G and Muller J F 1996 Three dimensional study of the relative contribution of the different nitrogen sources in the troposphere; J. Geophys. Res. 101 22,955–22,968.

    Article  Google Scholar 

  • Lehman J, Swinton K, Bortnick S, Hamilton C, Baldridge E, Eder B and Cox B 2004 Spatio-temporal characterization of tropospheric ozone across the eastern United States; Atmos. Environ. 38 4357–4369, https://doi.org/10.1016/j.atmosenv.2004.03.069.

  • Lelieveld J and Dentener F J 2000 What controls tropospheric ozone?; J. Geophys. Res. 105 3531–3551.

    Article  Google Scholar 

  • Li G, Bei N, Tie X and Molina L T 2011 Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign; Atmos. Chem. Phys. 11 5169–5182.

    Article  Google Scholar 

  • Mallik C, Lal S and Venkataramani S 2015 Trace gases at a semi-arid urban site in western India: Variability and inter-correlations; J. Atmos. Chem. 72(2) 143–164.

  • Mauzerall D and Wang X 2001 Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United States, Europe, and Asia; Ann. Rev. Energ. Env. 26 237–268.

  • Moorthy K K, Beegum S N, Babu S S, Smirnov A, John S R, Kumar K R, Narasimhulu K, Dutt C B S and Nair V S 2010 Optical and physical characteristics of Bay of Bengal aerosols during W-ICARB: Spatial and vertical heterogeneities in the marine atmospheric boundary layer and in the vertical column; J. Geophys. Res. 115 D24213, https://doi.org/10.1029/2010JD014094.

  • Naja M and Lal S 2002 Surface ozone and precursor gases at Gadanki (\(13.5^{\circ }\rm{N}\), \(79.2^{\circ }\rm{E}\)), a tropical rural site in India; J. Geophys. Res. 107(D14) 4197, https://doi.org/10.1029/2001JD000357.

  • Naja M, Lal S and Chand D 2003 Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (\(24.6^{\circ }\rm{N}\), \(72.7^{\circ }\rm{E}\), 1689 m asl) in India; Atmos. Environ. 37 4205–4215.

    Google Scholar 

  • Nair P R, Chand D, Lal S, Modh K S, Naja M, Parameswaran K and Venkataramani S 2002 Temporal variations in surface \(\rm{O}_{3}\) at Thumba (\(8.6^{\circ}\rm{N}\), \(77^{\circ}\rm{E}\)) – A tropical coastal site in India; Atmos. Environ. 36 603–610.

    Google Scholar 

  • Nishanth T, Praseed K, Kumar M K S and Valsaraj K T 2012 Analysis of ground level \(\rm{O}_{3}\) and NO\(_{\rm{x}}\) Measured at Kannur, India; J. Earth Sci. Climate Change 3(1), https://doi.org/10.4172/2157-7617.1000111.

  • Ojha N, Naja M, Singh K P, Sarangi T, Kumar R, Lal S, Lawrence M G, Butler T M and Chandola H C 2012 Variabilities in ozone at a semi-urban site in the Indo-Gangetic Plain region: Association with the meteorology and regional processes; J. Geophys. Res.- Atmos. 117(D20).

  • Peng Y P, Chen K S, Lai C H, Lu P J and Kao J H 2006 Concentrations of \(\rm{H}_{2}\rm{O}_{2}\) and \(\rm{HNO}_{3}\) and Ozone sensitivity in the ambient air of southern Taiwan; Atmos. Environ. 40 6741–6751.

    Article  Google Scholar 

  • Peng Y P, Chen K S, Wang H K and Lai C H 2011 In situ measurements of hydrogen peroxide, nitric acid and reactive nitrogen to assess the ozone sensitivity in Pingtung County, Taiwan; Aerosol Air Qual. Res. 11 59–69.

  • Pipal A S, Jan R, Satsangi P G, Tiwari S and Taneja A 2014 Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India; Aerosol Air Qual. Res. 14 1685–1700, https://doi.org/10.4209/aaqr.2014.01.0017.

  • Pitts F and Pitts B J 2000 Chemistry of the upper and lower atmosphere: Theory, experiments, and applications; Academic Press, San Diego, CA.

    Google Scholar 

  • Putero D, Landi T C, Cristofanelli P, Marinoni A, Laj P, Duchi R, Calzolari F, Verza G P and Bonasoni P 2014 Influence of open vegetation fires on black carbon and ozone variability in the southern Himalayas (NCO-P, 5079 m a.s.l.); Environ. Pollut. 184 597–604.

  • Racherla P N and Adams P J 2008 The response of surface ozone to climate change over the eastern United States; Atmos. Chem. Phys. 8 871–885.

    Article  Google Scholar 

  • Reddy R R, Gopal K R, Reddy L S S, Narasimhulu K, Kumar K R, Ahammed Y N and Reddy C V K 2008 Measurements of surface ozone at semi-arid site Anantapur (\(14.62^{\circ}\rm{N}\), \(77.65^{\circ}\rm{E}\), 331 m asl) in India; J. Atmos. Chem. 59 47–59.

    Article  Google Scholar 

  • Reddy K K, Naja M, Ojha N, Mahesh P and Lal S 2012 Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India; J. Earth Syst. Sci. 121(4) 911–922.

    Article  Google Scholar 

  • Renuka K, Gadhavi H, Jayarman A, Lal S, Naja M and Rao S V B 2014 Study of ozone and \(\rm{NO}_{2}\) over Gadanki–a rural site in south India; J. Atmos. Chem. 71(2) 95–112.

    Article  Google Scholar 

  • Sandhya M, Sridharan S, Indira Devi M and Gadhavi H 2015 Tropical upper tropospheric ozone enhancements due to potential vorticity intrusions over Indian sector; J. Atmos. Sol.–Terr. Phys. 132 147–152.

    Article  Google Scholar 

  • Sarangi T, Naja M, Ojha N, Kumar R, Lal S, Venkataramani S, Kumar A, Sagar R and Chandola H C 2014 First simultaneous measurements of ozone, CO, and \(\rm{NO}_{\rm{y}}\) at a high-altitude regional representative site in the central Himalayas; J. Geophys. Res. Atmos. 119(3) 1592–1611.

    Article  Google Scholar 

  • Satsangi G S, Lakhani A, Kulshrestha P R and Taneja A 2004 Seasonal and diurnal variation of surface ozone and a preliminary analysis of exceedance of its critical levels at a semi-arid site in India; J. Atmos. Chem. 47 271–286.

    Article  Google Scholar 

  • Seinfeld J H and Pandis S N 2006 Atmospheric chemistry and physics; John Wiley and Sons, New Jersey, Hoboken.

    Google Scholar 

  • Shan W, Yin Y, Lu H and Liang S 2009 A meteorological analysis of ozone episodes using HYSPLIT model and surface data; Atmos. Res. 93 767–776.

    Article  Google Scholar 

  • Sharma P, Kuniyal J C, Chand K, Guleria R P, Dhyani P P and Chauhan C 2013 Surface ozone concentration and its behaviour with aerosols in the northwestern Himalaya, India; Atmos. Environ. 71 44–53.

    Article  Google Scholar 

  • Sharma A, Mandal T K, Sharma S K, Shukla D K and Singh S 2016 Relationships of surface ozone with its precursors, particulate matter and meteorology over Delhi;J. Atmos. Chem. 74(4) 451–474, https://doi.org/10.1007/s10874-016-9351-7.

  • Shukla K, Srivastava P K, Banerjee T and Aneja V P 2017 Trend and variability of atmospheric ozone over middle Indo-Gangetic Plain: Impacts of seasonality and precursor gases; Environ. Sci. Pollut. Res. 24 164–179, https://doi.org/10.1007/s11356-016-7738-2.

  • Sillman S 1995 The use of NO\(_{\rm{y}}\), \(\rm{H}_{2}\rm{O}_{2}\) and \(\rm{HNO}_{3}\) as indicator for ozone-NO\(_{\rm{x}}\)-hydrocarbon sensitivity in urban locations; J. Geophys. Res. 100(D7) 14175–14188.

    Article  Google Scholar 

  • Sillman S, He D, Cardelino C and Imhoff R E 1997 The use of photochemical indicators to evaluate Ozone-NO\(_{\rm{x}}\)-hydrocarbon sensitivity: Case studies from Atlanta, New York, and Los Angeles; J. Air Waste Manag. Assoc. 47 1030–1040.

    Article  Google Scholar 

  • Sillman S, He D, Pippin M R, Daum P H, Imre D G, Kleinman L I, Lee J H and Weinstein-Lloyd J 1998 Model correlations for ozone, reactive nitrogen and peroxides for Nashville in comparison with measurements: Implications for VOC–\(\rm{NO}_{\rm{x}}\) sensitivity; J. Geophys. Res. 103 22,629–22,644.

    Article  Google Scholar 

  • Sillman S 1999 The relation between ozone, NO\(_{\rm{x}}\), and hydrocarbons in urban and polluted rural environments; Atmos. Environ. 33 1821–1845.

    Article  Google Scholar 

  • Sillman S and He D 2002 Some theoretical results concerning \(\rm{O}_{3}\), \(\rm{NO}_{\rm{x}}\)–VOC chemistry and \(\rm{NO}_{\rm{x}}\)–VOC indicators; J. Geophys. Res. 107(D22), https://doi.org/10.1029/2001JD001123.

  • Singla V, Satsangi A, Pachauri T, Lakhani A and Kumari K M 2011 \(\rm{O}_{3}\) formation and destruction at a sub-urban site in north central region of India; Atmos. Res. 101 373–385.

    Article  Google Scholar 

  • Singla V, Pachauri T, Satsangi A, Kumari K M and Lakhani A 2012 Surface ozone concentrations in Agra: Links with the prevailing meteorological parameters; Theor. Appl. Climatol. 110(3) 409–421.

    Article  Google Scholar 

  • Sitch S, Cox P M, Collins W J and Huntingford C 2007 Indirect radiative forcing of climate change through ozone effects on the land-carbon sink; Nature 448(7155) 791–794.

    Article  Google Scholar 

  • Solomon P, Cowling E, Hidy G and Furiness C 2000 Comparison of scientific findings from major ozone field studies in North America and Europe; Atmos. Environ. 34(12) 1885–1920.

    Article  Google Scholar 

  • Swamy Y V, Venkanna R, Nikhil G N, Chitanya D N S K, Sinha P R, Ramakrishna M and Rao A G 2012 Impact of nitrogen oxides, volatile organic compounds and black carbon on atmospheric ozone levels at a semi-arid urban site in Hyderabad; Aerosol Air Qual. Res. 12 662–671.

  • Tseng K H, Wang J L, Chen M T and Tsuang B J 2009 Assessing the relationship between air mass age and summer ozone episodes based on photochemical indices; Aerosol Air Qual. Res. 9 149–171.

    Google Scholar 

  • Tu J, Xia Z, Wang H and Li W 2007 Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China; Atmos. Res. 85 310–337.

  • Verma N, Satsangi A, Lakhani A and Kumari K M 2015 Prediction of ground level Ozone concentration in ambient air using multiple regression analysis; J. Chem. Biol. Phys. Sci. 5(4) 3685–3696.

    Google Scholar 

  • Verma N, Satsangi A, Lakhani A and Kumari K M 2016 Low molecular weight monocarboxylic acids in \(\rm{PM}_{2.5}\) and \(\rm{PM}_{10}\): Quantification, seasonal variation and source apportionment; Aerosol Air Qual. Res., https://doi.org/10.4209/aaqr.2016.05.0183.

  • Wang Y, Zhang X and Draxler R R 2009 TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data; Environ. Model Softw. 24 938–939.

    Article  Google Scholar 

  • Xu J, Zhang Y, Zheng S and He Y 2012 Aerosol effects on ozone concentrations in Beijing: A model sensitivity study; J. Environ. Sci. 24(4) 645–656.

    Article  Google Scholar 

  • Yadav S, Praveen O D and Satsangi P G 2015 The effect of climate and meteorological changes on particulate matter in Pune, India; Environ. Monit. Assess. 187(7) 402.

  • Yadav R, Sahu L K, Beig G and Jaaffrey S N A 2016 Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India; Atmos. Res. 176 96–107.

    Article  Google Scholar 

  • Yang K H, Ting C C, Wang J L, Wingenter O W and Chan C C 2005 Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan; Atmos. Environ. 39 2829–2838.

  • Zhang R, Sarwar G, Fung J C H and Lau A K H 2013 Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China; Atmos. Res. 132–133 332–344.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, Dayalbagh Educational Institute, Agra and the Head, Department of Chemistry for necessary help. The authors gratefully acknowledge the financial support for this work, which is provided by ISRO GBP under AT-CTM project. One of the authors, Nidhi Verma is grateful to the above project for providing SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Maharaj Kumari.

Additional information

Corresponding editor: A K Patra

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, N., Satsangi, A., Lakhani, A. et al. Characteristics of surface ozone in Agra, a sub-urban site in Indo-Gangetic Plain. J Earth Syst Sci 127, 42 (2018). https://doi.org/10.1007/s12040-018-0934-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-0934-3

Keywords

Navigation