New paleomagnetic results on \(\sim \)2367 Ma Dharwar giant dyke swarm, Dharwar craton, southern India: implications for Paleoproterozoic continental reconstruction

  • N Ramesh Babu
  • M Venkateshwarlu
  • Ravi Shankar
  • E Nagaraju
  • V Parashuramulu


Here we report new paleomagnetic results and precise paleopole position of the extensional study on \(\sim \)2367 Ma mafic giant radiating dyke swarm in the Dharwar craton, southern India. We have sampled 29 sites on 12 dykes from NE–SW Karimnagar–Hyderabad dykes and Dhone–Gooty sector dykes, eastern Dharwar craton to provide unambiguous paleomagnetism evidence on the spectacular radiating dyke swarm and thereby strengthening the presence of single magmatic event at \(\sim \)2367 Ma. A total of 158 samples were subjected to detailed alternating field and thermal demagnetization techniques and the results are presented here along with previously reported data on the same dyke swarm. The remanent magnetic directions are showing two components, viz., seven sites representing four dykes show component (A) with mean declination of \(94{{}^{\circ }}\) and mean inclination of \(-\,70{{}^{\circ }}\) (\(\hbox {k}=87\), \(\upalpha _{95}=10{{}^{\circ }}\)) and corresponding paleopole at \(16{{}^{\circ }}\hbox {N}\), \(41{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=15{{}^{\circ }}\) and \(\hbox {dm}=17{{}^{\circ }}\)) and 22 sites representing 8 dykes yielded a component (B) with mean declination of \(41{{}^{\circ }}\) and mean inclination of \(-\,21{{}^{\circ }}\) (\(\hbox {k}=41\), \(\upalpha _{95}=9{{}^{\circ }}\)) with a paleopole at \(41{{}^{\circ }}\hbox {N}\), \(200{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=5{{}^{\circ }}\) and \(\hbox {dm}=10{{}^{\circ }}\)). Component (A) results are similar to the previously reported directions from the \(\sim \)2367 Ma dyke swarm, which have been confirmed fairly reliably to be of primary origin. The component (B) directions appear to be strongly overprinted by the 2080 Ma event. The grand mean for the primary component (A) combined with earlier reported studies gives mean declination of \(97{{}^{\circ }}\) and mean inclination of \(-\,79{{}^{\circ }}\) (\(\hbox {k}=55\), \(\upalpha _{95}=3{{}^{\circ }}\)) with a paleopole at \(15{{}^{\circ }}\hbox {N}\), \(57{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=5{{}^{\circ }}\), \(\hbox {dm}=6{{}^{\circ }}\)). Paleogeographical position for the Dharwar craton at \(\sim \)2367 Ma suggests that there may be a chance to possible spatial link between Dharwar dykes of Dharwar craton (India), Widgemooltha and Erayinia dykes of Yilgarn craton (Australia), Sebanga Poort Dykes of Zimbabwe craton (Africa) and Karelian dykes of Kola-Karelia craton (Baltica Shield).


Paleomagnetism Dharwar giant dyke swarm Dharwar craton India 



We thank the Director, CSIR–NGRI, Hyderabad for the permission to publish this paper. We (NRB) would like to express our sincere gratitude to Dr Anil Kumar for his valuable advice and encouragement during this work. We also thank Prof. Joseph Meert for his valuable suggestions and constructive comments that helped to improve this paper to a large extent. We also thank the anonymous reviewer for his critical comments and suggestions. We also thank the handling editor Prof. Rajesh Srivastava.


  1. Aggarwal P K, Pandey J G and Negi J G 1992 A continental fragment of the paleosuper Dharwar Craton in India; Geology 20 543–546.CrossRefGoogle Scholar
  2. Balakrishnan S, Hanson G N and Rajamani V 1991 Pb and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar Schist Belt, South India; Contrib. Mineral. Petrol. 107(3) 279–292.Google Scholar
  3. Belica M E, Piispa, E J, Meert J G, Pesonen L J, Plado J, Pandit M K, Kamenov G D and Celestino M 2014 Paleoproterozoic mafic dyke swarms from the Dharwar craton: Paleomagnetic poles for India from 2.37–1.88 Ga and rethinking the Columbia supercontinent; Precamb. Res 244 100–122.CrossRefGoogle Scholar
  4. Buchan K L 2014 Key paleomagnetic poles and their use in Proterozoic continent and supercontinent reconstructions: A review; Precamb. Res. 244 5–22.CrossRefGoogle Scholar
  5. Bhalla M S, Hansraj Aand Prasada Rao N T V 1980 Paleomagnetic studies of Precambrian dykes from Hunsur, Holenarsipur and Tiptur in Karnataka, India; Geoviews 5 157–172.Google Scholar
  6. Chadima M and Hrouda F 2006 Remasoft 3.0 – A user-friendly paleomagnetic data browser and analyser; Trav. Geophys. XXVII 20–21.Google Scholar
  7. Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar craton, southern India, interpreted as the result of late Archean oblique convergence; Precamb. Res. 99 91–111.CrossRefGoogle Scholar
  8. Dash J K, Pradhan S K, Bhutani R, Balakrishnan S, Chandrasekaran G and Basavaiah N 2013 Paleomagnetism of ca. 2.3 Ga mafic dyke swarms in the northeastern Southern Granulite Terrain, India: Constraints on the position and extent of Dharwar craton in the Paleoproterozoic; Precamb. Res. 228 164–176.CrossRefGoogle Scholar
  9. Dawson E M and R B Hargraves 1994 Paleomagnetism of Precambrian swarms in the Harohalli area, south of Bangalore, India; Precamb. Res. 69 157–167.CrossRefGoogle Scholar
  10. Demirer K 2012 U–Pb baddeleyite ages from mafic dyke swarms in Dharwar craton, India – Links to an ancient supercontinent; Dissertations in Geology at Lund University, Master’s Thesis No. 308.Google Scholar
  11. Ernst R E and Srivastava R K 2008 India’s place in the Proterozoic world: Constraints from the large igneous provinces (LIP) record; In: Indian Dykes: Geochemistry, Geophysics, and Geochronology (eds) Srivastava R K, Sivaji Ch and Chalapathi Rao N V, Narosa Publishing House Pvt. Ltd, New Delhi, India, pp. 41–56.Google Scholar
  12. Evans M E 1968 Magnetization of dikes: A study of the paleomagnetism of the Widgiemooltha dike suite, western Australia; J. Geophys. Res. 73 32,361–33,270.Google Scholar
  13. French J E and Heaman L M 2010 U–Pb dating of Paleoproterozoic mafic dyke swarms of the south Indian Shield: Implications for paleocontinental reconstructions and identifying ancient mantle plume events; Precamb. Res. 183 416–441.CrossRefGoogle Scholar
  14. Halls H C, Kumar A, Srinivasan R and Hamilton M A 2007 Paleomagnetism and U–Pb geochronology of eastern trending dykes in the Dharwar craton, India: Feldspar clouding, radiating dyke swarms and position of India at 2.37 Ga; Precamb. Res. 155 47–68.Google Scholar
  15. Hasnain J and Qureshy M N 1971 Paleomagnetism and geochemistry of some dykes in Mysore State, India; J. Geophys. Res . 76 4786–4795.CrossRefGoogle Scholar
  16. Jones D L, Robertson I D M and McFadden P L 1975 A palaeomagnetic study of Precambrian dyke swarms associated with the Great Dyke of Rhodesia; Trans. Geol. Soc. South Afr. 78 57–65.Google Scholar
  17. Kirschvink J L 1980 The least squares line and plane and the analysis of paleomagnetic data; Geophys. J. R. Astron. Soc. 62 699–718.CrossRefGoogle Scholar
  18. Kumar A and Bhalla M S 1983 Paleomagnetics and igneous activity of the area adjoining the southwestern margin of the Cuddapah basin, India; Geophys. J. R. Astron. Soc. 73 27–37.CrossRefGoogle Scholar
  19. Kumar A, Pande K, Venkatesan T R and Bhaskar Rao, Y J 2001 The Karnataka Late Cretaceous dyke as products of the Marion hotspot at the Madagascar–India break up event: Evidence from \(^{40}\text{ Ar-- }^{39}\text{ Ar }\) geochronology and geochemistry; Geophys. Res. Lett. 28 2715–2718.CrossRefGoogle Scholar
  20. Kumar A, Hamilton M A and Halls H 2012 A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India; Geochem. Geophys. Gecosyst. 13 541, Scholar
  21. Kumar A, Parasharamulu V and Nagaraju E 2015 A 2080 Ma radiating dyke swarm in the Eastern Dharwar Craton, southern India and its implications to Cuddapah basin formation; Precamb. Res. 266 490–505.CrossRefGoogle Scholar
  22. Meert J G, Pandit M K, Pradhan V R, Banks J and Sirianni R 2010 Precambrian crustal evolution of peninsular India: A 3.0 billion year odyssey; J. Asian Earth Sci. 39(6) 483–515.CrossRefGoogle Scholar
  23. Meert J G and Pandit M K 2015 The Archaean and Proterozoic history of peninsular India: Tectonic framework for Precambrian sedimentary basins in India; Geol. Soc. Memoir 43(1) 29–54.CrossRefGoogle Scholar
  24. Mertanen S, Vuollo J I, Huhma H, Arestova N A and Kovalenko A 2006 Early Paleoproterozoic–Archean dykes and gneisses in Russian Karelia of the Fennoscandian Shield – New paleomagnetic, isotope age and geochemical investigations; Precamb. Res. 144 239–260.Google Scholar
  25. Mushayandebvu M F, Jones D L and Briden J C 1995 Palaeomagnetic and geochronological results from Proterozoic mafic intrusions in southern Zimbabwe; In: Physics and Chemistry of Dykes (eds) Baer G and Heimann A, Balkema, Rotterdam, pp. 293–303.Google Scholar
  26. Naqvi S M and Rogers J J W 1987 Precambrian Geology of India; Oxford University Press Inc., 223 p.Google Scholar
  27. Nemchin A A and Pidgeon R T 1998 Precise conventional and SHRIMP baddeleyite age for the Binneringie dyke near Narrogin, western Australia; Austr. J. Earth Sci. 45 673–675.CrossRefGoogle Scholar
  28. Pandey B K, Gupta J N, Sarma K J and Sastry C A 1997 Sm–Nd, Pb–Pb and Rb–Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, south India: Implications for Paleoproterozoic crustal evolution of the eastern Dharwar craton; Precamb. Res. 84 181–196.CrossRefGoogle Scholar
  29. Piispa E J, Smirnov A V, Pesonen L J, Lingadevaru M, Anantha Murthy K S and Devaraju T C 2011 An integrated study of Proterozoic dykes, Dharwar Craton, southern India; In: Dyke Swarms: Keys for Geodynamic Interpretation (ed.) Srivastava R K, Springer, Berlin, pp. 33–45.CrossRefGoogle Scholar
  30. Pisarevsky S A, Waele D B, John S, Soderlund Ulf and Ernst E R 2015 Paleomagnetism and U–Pb age of the 2.4 Ga Erayinia mafic dykes in the south-western Yilgarn, western Australia: Paleogeographic and geodynamic implications; Precamb. Res. 259 222–231.Google Scholar
  31. Rao J M, Rao G V S P and Patil S K 1990 Geochemical and paleomagnetic studies on the Middle Proterozoic Karimnagar mafic dyke swarm India; In: Mafic Dykes and Emplacement Mechanisms (eds) Parker A J, Rickwood P C and Tucker D H, Balkema AA, Rotterdam, Netherlands, pp. 373–382.Google Scholar
  32. Radhakrishna B P and Ramakrishna N 1990 Archean Greenstone Belts of South India; Geol. Soc. India, Bangalore.Google Scholar
  33. Radhakrishna T and Joseph M 1996 Proterozoic paleomagnetism of the mafic dyke swarms in the high grade region of southern India; Precamb. Res. 76 31–46.CrossRefGoogle Scholar
  34. Radhakrishna T, Krishnendu N and Balasubramonian G 2013 Palaeoproterozoic Indian shield in the global continental assembly: Evidence from the palaeomagnetism of mafic dyke swarms Earth Sci. Rev. 126 370–389.CrossRefGoogle Scholar
  35. Rogers J J W 1986 The Dharwar craton and the assembly of peninsular India; J. Geol. 94 129–144.CrossRefGoogle Scholar
  36. Salminen J, Halls H C, Mertanen S, Pesonen L J, Vuollo J and Söderlund U 2014 Paleomagnetic and geochronological studies on Paleoproterozoic diabase dykes of Karelia, East Finland – Key for testing the Superia super craton; Precamb. Res. 244 87–99.CrossRefGoogle Scholar
  37. Smirnov A V, Evans D A D, Ernst R E, Söderlund U and Li Z X 2013 Trading partners: Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn; Precamb. Res. 224 11–22.CrossRefGoogle Scholar
  38. Soderlund U, Hofmann A, Klausen M B, Olsson J R, Ernst R E and Persson P O 2010 Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U–Pb dating of regional dolerite dyke swarms and sill complexes; Precamb. Res. 183 388–398.CrossRefGoogle Scholar
  39. Srivastava R K 2010 Dyke Swarms: Keys for Geodynamic Interpretation; Springer Heidelberg Dordrecht London New York, IX.Google Scholar
  40. Srivastava, R K, Jayananda M, Gautam G C, Gireesh V and Samal A K 2014c Geochemistry of an ENE–WSW to NE–SW trending \(\sim \) 2.37 Ga mafic dyke swarm of the eastern Dharwar craton, India: Does it represent a single magmatic event?; Chemie der Erde 74 251–265.CrossRefGoogle Scholar
  41. Valet J P, Besse J, Kumar A, Vadakke-Chanat S and Philippe E 2014 The intensity of the geomagnetic field from 2.4 Ga old Indian dykes; Geochem. Geophys. Geosys. 15 10.1002/2014GC005296.Google Scholar
  42. Venkatesh A S, Poornachandra Rao G V S, Prasada Rao N T V and Bhalla M S 1987 Palaeomagnetic and geochemical studies on dolerite dykes from Tamil Nadu, India; Precamb. Res. 34 291–310.Google Scholar
  43. Vuollo J and Huhma H 2005 Paleoproterozoic mafic dykes in NE Finland; In: Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield (eds) Lehtinen M, Nurmi P A and Ramo O T, Elsevier Science B V, Amsterdam, pp. 195–236.Google Scholar
  44. Zijderveld J D A 1967 Demagnetization of rocks: Analysis of results; In: Methods in Palaeomagnetism (eds) Collinson D C, Creer K M and Runcorn S K, Elsevier, New York, pp. 254–286.Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • N Ramesh Babu
    • 1
  • M Venkateshwarlu
    • 1
  • Ravi Shankar
    • 1
  • E Nagaraju
    • 2
  • V Parashuramulu
    • 1
  1. 1.CSIR-National Geophysical Research InstituteHyderabadIndia
  2. 2.Centre for Earth and Space SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations