Skip to main content

The electrosorption of 3-bromo-2-nitrothiophene on gold as studied with surface-enhanced Raman spectroscopy


The electrosorption of 3-bromo-2-nitrothiophene on a polycrystalline gold electrode has been studied with surface-enhanced Raman spectroscopy SERS. Results imply a tilted orientation of the 3-bromo-2-nitrothiophene molecule with a sulfur atom of the thiophene ring and oxygen atoms of the nitro group interacting directly with the gold surface. The UV-Vis spectrum of the 3-bromo-2-nitrothiophene is recorded and its results indicated that the SERS spectra were measured under off-resonance conditions. Cyclic voltammetry measurements of the 3-bromo-2-nitrothiophene were made and the oxidation and reduction potentials of the 3-bromo-2-nitrothiophene at the gold electrode have been reported. The experimental infrared and Raman data are supported by density functional theory (DFT) calculations of 3-bromo-2-nitrothiophene using the B3LYP level of theory and 6-31G (d) basis set. The vibrational frequencies of the molecule were computed using the optimized geometry obtained from the DFT calculations. The calculated spectra are very close to the recorded infrared and Raman of the solid 3-bromo-2-nitrothiophene. No imaginary frequencies are observed in the calculated spectra. Also, DFT calculations are performed to predict and investigate the adsorption behavior of 3-bromo-2-nitrothiophene on the Au surface. In this DFT calculations, the adsorbed 3-bromo-2-nitrothiophene on the gold electrode surfaces was modeled as the metal−molecule complex.

Graphic abstract

Synopsis: Electrosorption of 3-bromo-2-nitrothiophene on a polycrystalline gold electrode was discussed. The adsorption orientation and adsorption sites of the 3-bromo-2-nitrothiophene molecule at the gold surface were reported. Electrochemical investigations show a reversible redox behavior in the anodic and cathodic scan direction. The computed frequencies of the 3-bromo-2-nitrothiophene molecule support the results obtained from the recorded IR and Raman spectra.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1.

    Bae S J, Lee C R, Choi I S, Hwang C S, Gong M S, Kim K and Joo S W 2002 Adsorption of 4-biphenylisocyanide on gold and silver nanoparticle surfaces: surface-enhanced raman scattering study J. Phys. Chem. B 106 7076

    CAS  Article  Google Scholar 

  2. 2.

    Pagliai M, Caporali S, Muniz-Miranda M, Pratesi G and Schettino V 2012 SERS, XPS, and DFT study of adenine adsorption on silver and gold surfaces J. Phys. Chem. Lett. 3 242

    CAS  Article  Google Scholar 

  3. 3.

    Kudelski A 2003 Chemisorption of 2-mercaptoethanol on silver, copper, and gold: direct raman evidence of acid-induced changes in adsorption/desorption equilibria Langmuir 19 3805

    CAS  Article  Google Scholar 

  4. 4.

    Bloxham S, Eicher-Lorka O, Jakubėnas R and Niaura G 2003 Adsorption of cysteamine at copper electrodes as studied by surface-enhanced raman spectroscopy Spectrosc. Lett. 36 211

    CAS  Article  Google Scholar 

  5. 5.

    Królikowska A, Kudelski A, Michota A and Bukowska J 2003 SERS studies on the structure of thioglycolic acid monolayers on silver and gold Surf. Sci. 532–535 227

    Article  Google Scholar 

  6. 6.

    Kania S and Holze R 1998 Surface enhanced Raman spectroscopy of anions adsorbed on foreign metal modified gold electrodes Surf. Sci. 408 252

    CAS  Article  Google Scholar 

  7. 7.

    Costa J C S, Ando R A, Camargo P H C and Corio P 2011 Understanding the effect of adsorption geometry over substrate selectivity in the surface-enhanced raman scattering spectra of simazine and atrazine J. Phys. Chem. C 115 4184

    CAS  Article  Google Scholar 

  8. 8.

    Takahashi M, Fujita M and Ito M 1984 Surface-enhanced Raman spectra and molecular orientation of phthalazine adsorbed on a silver electrode Chem. Phys. Lett. 109 122

    CAS  Article  Google Scholar 

  9. 9.

    Irish D E, Guzonas D and Atkinson G F 1985 Surface enhanced Raman spectroscopy of the silver/KCl, triethylenediamine (DABCO), water system Surf. Sci. 158 314

    CAS  Article  Google Scholar 

  10. 10.

    Netzer F P and Ramsey M G 1992 Structure and orientation of organic molecules on metal surfaces Crit. Rev. 17 397

    CAS  Google Scholar 

  11. 11.

    Bukowska J 1992 Surface-enhanced Raman scattering spectra as a probe of adsorbate-surface interaction J. Mol. Struct. 275 151

    CAS  Article  Google Scholar 

  12. 12.

    Majumder C, Mizuseki H and Kawazoe Y 2003 Thiophene thiol on the Au(111) surface: size-dependent adsorption study J. Chem. Phys. 118 9809

    CAS  Article  Google Scholar 

  13. 13.

    Mukherjee K, Bhattacharjee D and Misra T N 1999 Surface enhanced raman spectroscopic study of isomeric methylthiophenes in silver colloid J. Colloid Interface Sci. 213 46

    CAS  Article  Google Scholar 

  14. 14.

    Mukherjee K M and Misra T N 1997 Surface enhanced Raman spectroscopic study of 2- and 3-chloro-thiophene in silver hydrosol Spectrochim. Acta A 53 1439

    Article  Google Scholar 

  15. 15.

    Yashkin S N, Yashkina E A, Svetlov D A and Murashov B A 2019 Adsorption and chromatographic separation of thiophene derivatives on graphitized thermal carbon black russ J. Phys. Chem. A 93 2482

    CAS  Google Scholar 

  16. 16.

    Zimnicka M and Danikiewicz W 2015 Gas-phase anionic σ-adduct (trans)formations in heteroaromatic systems J. Am. Soc. Mass Spectrom. 26 1191

    CAS  Article  Google Scholar 

  17. 17.

    Katritzky A R, Akhmedov N G, Doskocz J, Hall C D, Akhmedova R G and Majumder S 2007 Structural elucidation of nitro-substituted five-membered aromatic heterocycles utilizing GIAO DFT calculations Magn. Reson. Chem. 45 5

    CAS  Article  Google Scholar 

  18. 18.

    Erker T and Nemec S 2004 Palladium-Catalyzed Cyanation Reactions of Thiophene Halides Synthesis 1 23

    Google Scholar 

  19. 19.

    Sartori L, Mercurio C, Amigoni F, Cappa A, Fagá G, Fattori R, Legnaghi E, Ciossani G, Mattevi A, Meroni G, Moretti L, Cecatiello V, Pasqualato S, Romussi A, Thaler F, Trifiró P, Villa M, Vultaggio S, Botrugno O A, Dessanti P, Minucci S, Zagarrí E, Carettoni D, Iuzzolino L, Varasi M and Vianello P 2017 Thieno[3,2-b]pyrrole-5-carboxamides as new reversible inhibitors of histone lysine demethylase KDM1A/LSD1. Part 1: high-throughput screening and preliminary exploration J. Med. Chem. 60 1673

  20. 20.

    Holze R 1988 Preparation of gold electrodes for surface enhanced Raman spectroscopy SERS Surf. Sci. 202 L612

    CAS  Article  Google Scholar 

  21. 21.

    Gaussian 09, Revision A.01, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb, M A Cheeseman, J R; Scalmani G Barone, V Mennucci, B Petersson G A; Nakatsuji H Caricato M, Li X, Hratchian, H P Izmaylov, A F.; Bloino, J Zheng, G Sonnenberg, J L Hada, M Ehara, M Toyota, K Fukuda, R Hasegawa, J Ishida, M Nakajima, T Honda, Y Kitao, O Nakai, H Vreven, T Montgomery, J A Jr., Peralta, J E Ogliaro, F Bearpark, M. Heyd, J J Brothers, E Kudin, K, J W; Martin, R L Morokuma, K Zakrzewski, V G Voth, G A Salvador, P Dannenberg, J J.; Dapprich, S Daniels, A D; Farkas, Ö Foresman, J B Ortiz, J V Cioslowski, J and Fox, D J Nakatsuji, H Caricato, M. Li, X. Hratchian, H P Izmaylov, A F Bloino, J Zheng, G Sonnenberg, J L Hada, M Ehara, M Toyota, K Fukuda, R Hasegawa, J Ishida, M Nakajima, T Honda, Y Kitao, O Nakai, H Vreven, T Montgomery, J A Jr., Peralta, J E Ogliaro, F Bearpark, Heyd, M J J Brothers, E Kudin, K N Staroverov, V N Kobayashi, R Normand, J Raghavachari, K Rendell, A Burant, J C Iyengar, S S Tomasi, J Cossi, M Rega, N Millam, J M Klene, M J Knox, E Cross, J B Bakken, V Adamo, C Jaramillo, J Gomperts, R Stratmann, R E Yazyev, O Austin, A J Cammi, R Pomelli, C Ochterski, J W Martin, R L Morokuma, K Zakrzewski, V G Voth, G A Salvador, P Dannenberg, J J Dapprich, S Daniels, A D Farkas, Ö Foresman, J B Ortiz, J V Cioslowski, J and Fox D J. Gaussian, Inc., Wallingford CT, 2009.

  22. 22.

    Scott A P and Radom L 1996 Harmonic vibrational frequencies: an evaluation of hartree−fock, møller−plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors J. Phys. Chem. 100 16502

    CAS  Article  Google Scholar 

  23. 23.

    Gronowitz S 1991 Chemistry of Heterocyclic Compounds: Thiophene and Its Derivatives Part Four, Vol. 44 (US: John Wiley & Sons)

    Book  Google Scholar 

  24. 24.

    Kuwabata S, Ito S and Yoneyama H 1988 Copolymerization of pyrrole and thiophene by electrochemical oxidation and electrochemical behavior of the resulting copolymers J. Electrochem. Soc. 135 1691

    CAS  Article  Google Scholar 

  25. 25.

    Roncali J 1992 Conjugated poly(thiophenes): synthesis, functionalization, and applications Chem. Rev. 92 711

    CAS  Article  Google Scholar 

  26. 26.

    Mehri F, Sauter W, Schröeder U and Rowshanzamir S 2019 Possibilities and constraints of the electrochemical treatment of thiophene on low and high oxidation power electrodes Energy Fuels 33 1901

    CAS  Article  Google Scholar 

  27. 27.

    Breccia A, Busi F, Gattavecchia E and Tamba M 1990 Reactivity of nitro-thiophene derivatives with electron and oxygen radicals studied by pulse radiolysis and polarographic techniques Radiat. Environ. Biophys. 29 153

    CAS  Article  Google Scholar 

  28. 28.

    Boga C, Calvaresi M, Franchi P, Lucarini M, Fazzini S, Spinelli D and Tonelli D 2012 Electron reduction processes of nitrothiophenes. A systematic approach by DFT computations, cyclic voltammetry and E-ESR spectroscopy Org. Biomol. Chem. 10 7986

  29. 29.

    Lin-Vien D, Colthup N B, Fateley W G and Grasselli J G 1991 The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press: San Diego)

    Google Scholar 

  30. 30.

    Mukherjee K M and Misra T N 1997 Surface enhanced raman spectroscopic study of 2- and 3-bromothiophenes in silver hydrosol Bull. Chem. Soc. Jpn. 70 301

    CAS  Article  Google Scholar 

  31. 31.

    Bazzaoui E A, Bazzaoui M, Aubard J, Lomas J S, Félidj N and Lévi G 2001 Surface-enhanced Raman scattering study of polyalkylthiophenes on gold electrodes and in silver colloids Synth. Met. 123 299

    CAS  Article  Google Scholar 

  32. 32.

    Neelakantan P 1964 Raman spectrum of acetonitrile Proc. Indian Acad. Sci. – Sec. A 60 422

  33. 33.

    Hassan N and Holze R 2012 Surface enhanced Raman spectroscopy of self-assembled monolayers of 2-mercaptopyridine on a gold electrode Russ. J. Electrochem. 48 401

    CAS  Article  Google Scholar 

  34. 34.

    Kang H, Noh J, Ganbold E-O, Uuriintuya D, Gong M-S, Oh J J, et al. 2009 Adsorption changes of cyclohexyl isothiocyanate on gold surfaces J. Colloid Interface Sci. 336 648

    CAS  Article  Google Scholar 

  35. 35.

    Joo S W, Han S W and Kim K 2000 Surface-enhanced raman scattering of aromatic sulfides in aqueous gold sol Appl. Spectrosc. 54 378

    CAS  Article  Google Scholar 

  36. 36.

    Holze R 2015 The adsorption of thiophenol on gold – a spectroelectrochemical study Phys. Chem. Chem. Phys. 17 21364

    CAS  Article  Google Scholar 

  37. 37.

    Holze R 1990 The adsorption of p-nitroaniline on silver and gold electrodes as studied with surface enhanced Raman spectroscopy (SERS) Electrochim. Acta 35 1037

    CAS  Article  Google Scholar 

  38. 38.

    Jbarah AA and Holze R 2006 A comparative spectroelectrochemical study of the redox electrochemistry of nitroanilines J. Solid State Electr. 10 360

    CAS  Article  Google Scholar 

  39. 39.

    Moskovits M 1982 Surface selection rules J. Chem. Phys. 77 4408

    CAS  Article  Google Scholar 

  40. 40.

    Moskovits M and Suh J S 1984 The geometry of several molecular ions adsorbed on the surface of colloidal silver J. Phys. Chem. 88 1293

    CAS  Article  Google Scholar 

  41. 41.

    Moskovits M and Suh J S 1984 Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver J. Phys. Chem. 88 5526

    CAS  Article  Google Scholar 

  42. 42.

    Moskovits M, DiLella D P and Maynard K J 1988 Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: selection rules and molecular reorientation Langmuir 4 67

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Abdel Aziz Qasem Jbarah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jbarah, A.A.Q. The electrosorption of 3-bromo-2-nitrothiophene on gold as studied with surface-enhanced Raman spectroscopy. J Chem Sci 133, 52 (2021).

Download citation


  • spectroelectrochemistry
  • 3-bromo-2-nitrothiophene
  • electrosorption
  • Raman
  • DFT