Skip to main content
Log in

Lewis acid catalyst system for Diels–Alder reaction

  • Rapid Communication
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Ca(OTf)2/Bu4NPF6 catalytic system has been illustrated for the synthesis of Diels–Alder adduct for the first time. This procedure tolerates substrate diversity and delivers high yield. Use of environmentally benign catalyst, high yields and substrate diversity are the highlight of the existing method.

Graphic Abstract

Ca(OTf)2, along with n-Bu4NPF6 as the co-catalyst, is shown to be an effective Lewis acidic catalyst system for the Diels–Alder reaction. Apart from being sustainable and efficient, this procedure is robust and products are obtained in near-quantitative yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

References

  1. Diels O and Alder K 1928 Synthesen in der hydroaromatischen Reihe Justus Liebigs Ann. Chem. 460 98

    Article  CAS  Google Scholar 

  2. Dewar M J S, Olivella S and Stewart J J P 1986 Mechanism of the Diels–Alder reaction: reactions of butadiene with ethylene and cyanoethylenes J. Am. Chem. Soc. 108 5771

    Article  CAS  Google Scholar 

  3. Yates P and Eaton P 1960 Acceleration of the Diels–Alder reaction by aluminum chloride J. Am. Chem. Soc. 82 4436

    Article  CAS  Google Scholar 

  4. Fray GI and Robinson R 1961 Catalysis of the Diels–Alder reaction J. Am. Chem. Soc. 83 249

    Article  CAS  Google Scholar 

  5. Houk K N and Strozier R W 1973 Lewis acid catalysis of Diels–Alder reactions J. Am. Chem. Soc. 95 4094

    Article  CAS  Google Scholar 

  6. Rideout DC and Breslow R 1980 Hydrophobic acceleration of Diels–Alder reactions J. Am. Chem. Soc. 102 7816

    Article  CAS  Google Scholar 

  7. Ruiz-Lopez M F, Assfeld X, Garcia J I, Mayoral J A and Salvatella L 1993 Solvent effects on the mechanism and selectivities of asymmetric Diels–Alder reactions J. Am. Chem. Soc. 115 8780

    Article  CAS  Google Scholar 

  8. Breslow R and Maitra U 1984 On the origin of product selectivity in aqueous Diels–Alder reactions Tetrahedron Lett. 25 1239

    CAS  Google Scholar 

  9. Blokzij W, Blandamer M J and Engberts J B F N 1991 Diels–Alder reactions in aqueous solutions. Enforced hydrophobic interactions between diene and dienophile J. Am. Chem. Soc. 113 4241

  10. Kumar A 1994 Can internal pressure describes the effect of salt in aqueous Diels–Alder reactions? A possible explanation J. Org. Chem. 59 230

    CAS  Google Scholar 

  11. Jørgensen K A 2000 Catalytic Asymmetric Hetero‐Diels–Alder Reactions of Carbonyl Compounds and Imines Angew. Chem. Int. Ed. 39 3558

    Google Scholar 

  12. Schaus S E, Brånalt J and Jacobsen E N 1998 Asymmetric Hetero-Diels–Alder Reactions Catalyzed by Chiral (Salen)Chromium(III) Complexes J. Org. Chem. 63 403

    Article  CAS  Google Scholar 

  13. Deguin B and Vogel P 1992 Hetero-Diels–Alder addition of sulfur dioxide to 1,3-dienes. Suprafaciality, regioselectivity, and stereoselectivity J. Am. Chem. Soc. 114 9210

  14. Streith J and Defoin A 1994 Hetero Diels–Alder Reactions with Nitroso Dienophiles: Application to the Synthesis of Natural Product Derivatives Synth. 11 1107

    Google Scholar 

  15. Waldmann H 1994 Asymmetric Hetero Diels–Alder Reactions Synth. 6 535

    Google Scholar 

  16. Houk K N, Lin Y T and Brown F K 1986 Evidence for the concerted mechanism of the Diels–Alder reaction of butadiene with ethylene J. Am. Chem. Soc. 108 554

    Article  CAS  Google Scholar 

  17. Kagan H B and Riant O 1992 Catalytic asymmetric Diels–Alder reactions Chem. Rev. 92 1007

    Article  CAS  Google Scholar 

  18. Nicolaou K C, Snyder S A, Montagnon T and Vassilikogiannakis G 2002 The Diels–Alder reaction in total synthesis Angew. Chem. Int. Ed Engl. 41 1668

    Article  CAS  Google Scholar 

  19. Du H, Long J, Hu J, Li X and Ding K 2002 3,3‘-Br2-BINOL-Zn Complex:  A Highly Efficient Catalyst for the Enantioselective Hetero-Diels−Alder Reaction Org. Lett. 42 4349

    Google Scholar 

  20. Hara K, Akiyama R and Sawamura M 2005 Strong Counteranion Effects on the Catalytic Activity of Cationic Silicon Lewis Acids in Mukaiyama Aldol and Diels−Alder Reactions Org. Lett. 25 5621

    Google Scholar 

  21. Fang X, Chen X and Chi YC 2011 Enantioselective Diels–Alder Reactions of Enals and Alkylidene Diketones Catalyzed by N-Heterocyclic Carbenes Org. Lett. 13 4708

    CAS  Google Scholar 

  22. Funel J A and Abele S 2013 Industrial Applications of the Diels–Alder Reaction Angew. Chem. Int. Ed. 52 3822

    Article  CAS  Google Scholar 

  23. Goussé C and Gandini A 1999 Diels–Alder polymerization of difurans with bismaleimides Polym. Int. 48 723

    Google Scholar 

  24. Gacal B, Durmaz H, Tasdelen MA, Hizal G, Tunca U, Yagci Y and Demirel A L 2006 Anthracene−Maleimide-Based Diels−Alder “Click Chemistry” as a Novel Route to Graft Copolymers Macromolecules 39 5330

  25. Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wiessler M, Schultz C and Lemke EA 2012 Amino acids for Diels–Alder reactions in living cells Angew. Chem. Int. Ed. Engl. 51 4166

    Article  CAS  Google Scholar 

  26. Liu Y-L and Chuoa T-W 2013 Self-healing polymers based on thermally reversible Diels–Alder chemistry Polym. Chem. 4 2194

    CAS  Google Scholar 

  27. Shi Z, Hau S, Luo J, Kim T D, Tucker N M, Ka J W and Jen A K Y 2007 Highly Efficient Diels–Alder Crosslinkable Electro‐Optic Dendrimers for Electric‐Field Sensors Adv. Func. Mat. 17 2557

    Article  CAS  Google Scholar 

  28. Sarkar S, Bekyarova E and Haddon R C 2012 Chemistry at the Dirac Point: Diels–Alder Reactivity of Graphene Acc. Chem. Res. 45 673

    Article  CAS  Google Scholar 

  29. Gates M and Tschudi G 1952 The synthesis of morphine J. Am. Chem. Soc. 74 1109

    Article  CAS  Google Scholar 

  30. Woodward R B, Sondheimer F, Taub D, Heusler K and McLamore W M 1952 The Total Synthesis of Steroids J. Am. Chem. Soc. 74 4223

    Article  CAS  Google Scholar 

  31. Corey E J, Guzman-Perez A and Loh T-P 1994 Demonstration of the Synthetic Power of Oxazaborolidine-Catalyzed Enantioselective Diels–Alder Reactions by Very Efficient Routes to Cassiol and Gibberellic Acid J. Am. Chem. Soc. 116 3611

    Article  CAS  Google Scholar 

  32. Begouin J-M and Niggemann M 2013 Based Lewis Acid Catalysts Chem. Eur. J. 19 8030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is generously supported by the Department of Science and Technology (DST- SERB/ ECR/2015/000363) India to SM.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and R.K. carried out the synthesis, purification, and characterization of the synthesized molecules. S.M. directed the synthetic work and wrote the paper based upon drafts written by R.K.

Corresponding author

Correspondence to Satyendra Mishra.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalepu, R., Mishra, S. Lewis acid catalyst system for Diels–Alder reaction. J Chem Sci 132, 48 (2020). https://doi.org/10.1007/s12039-020-1749-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-1749-8

Keywords

Navigation