Triethylenetetramine complexes of cobalt(III) having anion binding sites: synthesis, characterisation, crystal structure, anti-bacterial and anti-cancer properties of [Co(trien)(NO2)2]2Cr2O7 and [Co(trien)(NO2)2]SCN


Crystals of cobalt(III) salts dinitro(triethylenetetramine)cobalt(III) dichromate [Co(trien)(NO2)2]2Cr2O7 (1) and dinitro(triethylenetetramine)cobalt(III) thiocyanate [Co(trien)(NO2)2]SCN (2) have been synthesized to investigate [Co(trien)(NO2)2]+ cation as a promising host to capture dichromate and thiocyanate anions. The characterization of the newly synthesized compounds was accomplished by elemental analysis and spectroscopic techniques (IR, UV/visible and 1H-NMR) and solubility product measurement. The asymmetric unit of complex 1 has a half dichromate anion and one [Co(trien)(NO2)2]+ cation while that of complex 2 has one thiocyanate anion and one [Co(trien)(NO2)2]+ cation as divulged by X-ray structure determination. The structural investigation exhibited that the crystal lattice was stabilized by second sphere hydrogen bonding interactions such as N–Htrien···O (dichromate), C–Htrien···O (dichromate), N–Htrien···N (thiocyanate) and C–Htrien···N (thiocyanate) interactions resulting in the formation of supramolecular assemblies. The complexes 1 and 2 were further examined for antibacterial activity and the findings unveiled moderate activity against gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa species. These complexes were also scrutinized for anti-proliferative activity against malignant PANC-1 cells using MTT cell survival analysis. Complex 1 exhibited remarkable anticancer activity whereas complex 2 has comparatively lesser anticancer potential.

Graphic abstract

Crystals of cobalt(III) ion [Co(trien)(NO2)2].X (X= ½.Cr2O7 (1)/ SCN (2)) have been synthesized and characterized by various spectroscopic and analytical techniques. Structural study of 1 and 2 were established and divulge formation of supramolecular assemblies through H-bonding. Complex 1 and 2 were further examined for antibacterial and antiproliferative activity. Complex 1 exhibited remarkable anticancer activity whereas complex 2 has comparatively lesser anticancer potential

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1.

    Busschaert N, Caltagirone C, Rossom W V and Gale P A 2015 Applications of supra molecular anion recognition Chem. Rev. 115 8038

    CAS  Article  Google Scholar 

  2. 2.

    King R B 1970 Some applications of metal carbonyl anions in the synthesis of unusual organometallic compounds Acc. Chem. Res. 3 417

    CAS  Article  Google Scholar 

  3. 3.

    Phipps R J, Hamilton G L and Toste F D 2012 The progression of chiral anions from concepts to applications in asymmetric catalysis Nat. Chem. 4 603

    CAS  Article  Google Scholar 

  4. 4.

    Malabanan M M, Amyes T L and Richard J P 2010 A role for flexible loops in enzyme catalysis Curr. Opin. Struct. Biol. 20 702

    CAS  Article  Google Scholar 

  5. 5.

    Bilaničová D, Salis A, Ninham B W and Monduzzi M 2008 Specific anion effects on enzymatic activity in nonaqueous media J. Phys. Chem. B 112 12066

    Article  Google Scholar 

  6. 6.

    Planells-Cases R and Jentsch T J 2009 Chloride channelopathies Biochim. Biophys. Acta 1792 173

    CAS  Article  Google Scholar 

  7. 7.

    Quinton P M 2008 Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis Lancet 372 415

    CAS  Article  Google Scholar 

  8. 8.

    Beer P D and Gale P A 2001 Anion Recognition and Sensing: The State of the Art and Future Perspectives Angew. Chem. Int. Ed. 40 486

    CAS  Article  Google Scholar 

  9. 9.

    Zieliński T, Dydio P and Jurczak J 2008 Synthesis, structure and the binding properties of the amide-based anion receptors derived from 1H -indole-7-amine Tetrahedron 64 568

  10. 10.

    Matthews S E and Beer P D 2005 Calixarene-based anion receptors Supramol. Chem. 17 411

    CAS  Article  Google Scholar 

  11. 11.

    Saha I, Lee J T and Lee C-H 2015 Recent advancements in Calix[4]pyrrole-based anion-receptor chemistry Eur. J. Org. Chem. 18 3859

    Article  Google Scholar 

  12. 12.

    Amendola V, Fabbrizzi L and Mosca L 2010 Anion recognition by hydrogen bonding: urea-based receptors Chem. Soc. Rev. 39 3889

    CAS  Article  Google Scholar 

  13. 13.

    Byrne S and Mullen K M 2017 Urea and thiourea based anion receptors in solution and on polymer supports Supramol. Chem. 30 196

    Article  Google Scholar 

  14. 14.

    Blondeau P, Segura M, Pérez-Fernández R and de Mendoza J 2007 Molecular recognition of oxoanions based on guanidinium receptors Chem. Soc. Rev. 36 198

    CAS  Article  Google Scholar 

  15. 15.

    Kilah N L and Beer P D 2010 Pyridine and pyridinium-based anion receptors Top Heterocycl. Chem. 24 301

    CAS  Article  Google Scholar 

  16. 16.

    Llinares J M, Powell D and Bowman-James K 2003 Ammonium based anion receptors Coord. Chem. Rev. 240 57

    CAS  Article  Google Scholar 

  17. 17.

    Choudhary V R, Patil N S, Chaudhari N K and Bhargava S K 2004 Biphasic selective epoxidation of styrene by t-butyl hydroperoxide to styrene oxide using potassium chromate or dichromate catalyst in aqueous medium Catal. Commun. 5 205

    CAS  Article  Google Scholar 

  18. 18.

    Feiz M and Norouzi H 2014 Dyeing studies of wool fibers with madder (Rubia Tinctorum) and effects of different mordants and mordanting procedures on color characteristics of dyed samples Fiber. Polym. 15 2504

    CAS  Article  Google Scholar 

  19. 19.

    Levis A G and Buttignol M 1977 Effects of potassium dichromate on DNA synthesis in hamster fibroblasts Br. J. Cancer 35 496

    CAS  Article  Google Scholar 

  20. 20.

    Agbai O 1986 Anti-sickling effect of dietary thiocyanate in prophylactic control of sickle cell anemia J. Natl. Med. Assoc. 78 1053

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Chandler J D and Day B J 2012 Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties Biochem. Pharmacol. 84 1381

    CAS  Article  Google Scholar 

  22. 22.

    Laurberg P, Pedersen I B, Carlé A, Anderden S, Knudsen N and Karmisholt J 2009 Comprehensive Handbook of Iodine (Cambridge: Academic Press) p. 275

  23. 23.

    Ambika S, Manojkumar Y, Arunachalam S, Gowdhami B, Sundaram K K M, Solomon R V, Venuvanalingam P, Akbarsha M A and Sundararaman M 2019 Biochemical interaction, anti-cancer and anti-angiogenic properties of cobalt(III) schiff base complexes Sci. Rep. 9 1

    CAS  Article  Google Scholar 

  24. 24.

    Munteanu C R and Suntharalingam K 2015 Advances in cobalt complexes as anticancer agents Dalton Trans. 44 13796

    CAS  Article  Google Scholar 

  25. 25.

    Savithri K, Kumar B C V, Vivek H K and Revanasiddappa H D 2018 Synthesis and characterization of cobalt(III) and copper(II) complexes of 2-((E)-(6-Fluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol: DNA binding and nuclease studies—SOD and antimicrobial activities Int. J. Spectrosc. 2018 1

    Article  Google Scholar 

  26. 26.

    McClure M 2008 Synthesis and symmetry of two cobalt(III) complexes with tetradentate ligands J. Chem. Edu. 85 420

    CAS  Article  Google Scholar 

  27. 27.

    Sheldrick G M 2008 A short history of SHELX Acta Cryst. A 64 112

  28. 28.

    Prabst K, Engelhardt H, Ringgeler S and Hubner H 2017 Basic colorimetric proliferation assays: MTT, WST and resazurin Methods Mol. Biol. 1601 1

    CAS  Article  Google Scholar 

  29. 29.

    Law B Y K, Qu Y Q, Mok S W F, Liu H, Zeng W, Han Y, Gordillo-Martinez F, Chan W-K, Wong K M-C and Wong V K W 2017 New perspectives of cobalt tris(bipyridine) system: anti-cancer effect and its collateral sensitivity towards multidrug-resistant (MDR) cancers Oncotarget 8 55003

  30. 30.

    Thamilarasan V, Sengottuvelan N, Sudha A, Srinivasan P and Chakkaravarthi G 2016 Cobalt(III) complexes as potential anticancer agents: physicochemical, structural, cytotoxic activity and DNA/protein interactions J. Photochem. Photobiol. B 162 558

    CAS  Article  Google Scholar 

  31. 31.

    Buckingham D A and Jones D 1965 Infrared spectra of cobalt(III) triethylenetetramine complexes Inorg. Chem. 4 1387

    CAS  Article  Google Scholar 

  32. 32.

    Al-Kayssi M and Magee R I 1962 Analytical applications of infrared spectroscopy identification of polyatomic inorganic anions Talanta 9 667

    CAS  Article  Google Scholar 

  33. 33.

    Sharma R P, Sharma R, Bala R, Salas J M and Quiros M 2006 Second sphere coordination complexes via hydrogen bonding: synthesis, spectroscopic characterization of [trans-Co(en)2Cl2]CdX4(X = Br or I) and single crystal X-ray structure determination of [trans-Co(en)2Cl2]CdBr4, J. Mol. Struct. 794 341

    CAS  Article  Google Scholar 

  34. 34.

    Fuziwara T and Bailar J C 1988 Reactions of coordination compounds in the solid state II. The interconversion of the isomers of dichloro(triethylenetetramine)cobalt(III) chloride, [Co(trien)Cl2]Cl, upon heating in the solid state Bull. Chem. Soc. Jpn. 61 849

  35. 35.

    McClure M R and Holcombe J 2004 Synthesis and NMR characterization of cobalt(III) complexes with triethylenetetramine, 2,2-bipyridine and 1,10-phenanthrodine J. Coord. Chem. 57 907

    CAS  Article  Google Scholar 

  36. 36.

    Sargeson A M and Searle G H 1967 The stereochemistry and preparation of triethylenetetramine-disubstituted cobalt(III) complexes Inorg. Chem. 6 787

    CAS  Article  Google Scholar 

  37. 37.

    Pecile C 1966 Infrared studies of planer and tetrahedral inorganic thiocyanates Inorg. Chem. 5 210

    CAS  Article  Google Scholar 

  38. 38.

    Derwahl A, Dickie A J, House D A, Jackson W G, Schaffner S, Svensson J, Turnbull M M and Zehnder M 1997 Anionopentaaminecobalt(III) complexes with polyamine ligands 28. The crystal structure of [CoCl(tacn)(en)]ZnCl4, [CoCl(tacn)(ampy)] ZnCl4.H2O,unsym-[CoCl(N-Metacn)(en)]-ZnCl4.H2O,trans-(R,S)-[CoCl(2,2,3-tet)(NH3)] ZnCl4 and unsym-fac-[CoCl(bn)(dien)] ZnCl4 Inorg. Chim. Acta 257 179

  39. 39.

    Guzei I A and Arderne C 2015 Polymorphism of dinitro[tris(2-aminoethyl)amine]-cobalt(III) chloride Acta Crystallogr. C 71 695

  40. 40.

    House D A and Svensson J 1998 Kinetic studies using Co(III) and Cr(III) complexes of 1,4,7,11-tetraazaundecane (2,2,3-tet) and the crystal structure of trans-[CrCl2(2,2,3-tetH)(OH2)]Cl.ClO4 Inorg. Chim. Acta 278 24

  41. 41.

    Khranenko S P, Kuratieva N V, Korolkov I V and Gromilov S A 2016 Crystal structure of [Pb3(OH)4Co(NO2)3](NO3)(NO2)·2H2O J. Struct. Chem. 57 625

    CAS  Article  Google Scholar 

  42. 42.

    Arora S, Talwar D, Singh M, Sahoo S C and Sharma R 2019 Second sphere coordination in orthonitrophenolate binding: synthesis, biological, cytotoxic and X-ray structural studies of [Co(bpy)2CO3](C6H4NO3).3H2O J. Mol. Struct. 1199 127017

    Article  Google Scholar 

  43. 43.

    Kumar R S and Arunachalam S 2008 Synthesis, micellar properties, DNA binding and antimicrobial studies of some surfactant–cobalt(III) complexes Biophys. Chem. 136 136

    CAS  Article  Google Scholar 

  44. 44.

    Chang E L, Simmers C and Knight D A 2010 Cobalt complexes as antiviral and antibacterial agents Pharmaceuticals 3 1711

    CAS  Article  Google Scholar 

  45. 45.

    Kumar R S, Arunachalam S, Periasamy V S, Preethy C P, Riyasdeen A and Akbarsha M A 2009 Surfactant–cobalt(III) complexes: synthesis, critical micelle concentration (CMC) determination, DNA binding, antimicrobial and cytotoxicity studies J. Inorg. Biochem. 103 117

    CAS  Article  Google Scholar 

Download references


Dr. Talwar is very thankful to the DST-FIST for providing single-crystal X-ray facility as well as UGC-CAS’s assistance at Panjab University, Chandigarh-160014. He also pays special thanks to the Principal of DAV College, Sector-10, Chandigarh-160010.

Author information



Corresponding author

Correspondence to Dinesh Talwar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 624 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chetal, M., Talwar, D., Singh, R. et al. Triethylenetetramine complexes of cobalt(III) having anion binding sites: synthesis, characterisation, crystal structure, anti-bacterial and anti-cancer properties of [Co(trien)(NO2)2]2Cr2O7 and [Co(trien)(NO2)2]SCN. J Chem Sci 133, 15 (2021).

Download citation


  • Cobalt(III)
  • second sphere coordination
  • dichromate
  • thiocyanate
  • antibacterial
  • anticancer