Temperature and Ph-sensıtıve Super absorbent Polymers based on Modıfıed Maleıc Anhydrıde


Maleic anhydride was modified with 1-decanol at two different ratios to obtain derivatives named MD-75 (75% modified) and MD-100 (100% modified). By using these derivatives and acrylamide (AAm), many hydrogels with different AAm/MD ratios were synthesized. Ammonium persulphate (APS), N,N,N′,N′-tetramethyl ethylenediamine (TMEDA) and N,N′-methylene bisacrylamide (MBAAm) were used as initiator, catalyts and crosslinker agent respectively in the synthesis reaction. The modification reactions were clarified by FTIR and 1H-NMR methods. Swelling behaviours, swelling capacities and effect of temperature, pH of the swelling medium and hydrogel composition on these parameters were studied. The swelling capacity of the hydrogels increased up to 82700% with decreasing the AAm/MD ratio. Temperature and pH of the swelling medium and the composition of the hydrogels were found to have a strong effect on the swelling behaviour and the swelling capacity of the hydrogels. The gels showed low swelling capacity with single-step swelling behaviour at low temperatures (T≤50 °C) and high swelling capacity with two-step swelling behaviour at higher temperatures. The swelling and diffusion kinetics of the hydrogels were also determined. All of the synthesized hydrogels showed uniform diffusion type at low temperatures while two types of diffusion observed at high temperatures.

Graphic abstract

Hydrogels of modified maleic anhydride were prepared by chemical cross-linking. Hydrogels showed excellent swelling capacity up to 82,700%. Temperature and pH have a strong effect on the swelling capacity of the hydrogels. Hydrogels showed two-step swelling behaviour.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1.

    Peppas N A and Khare A R 1993 Preparation, structure and diffusional behavior of hydrogels in controlled release Adv. Drug Deliv. Rev. 11 1

    CAS  Article  Google Scholar 

  2. 2.

    Zohuriaan-Mehr M J and Kabiri K 2008 Superabsorbent Polymer Materials: A Review Iran. Polym. J. 17 451

    CAS  Google Scholar 

  3. 3.

    Sharma K, Kaith B S, Kumar V, Kalia S and Swart H C 2014 Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels Polym. Degrad. Stabil. 107 166

    CAS  Article  Google Scholar 

  4. 4.

    Yang B, Lu Y, Ren T and Luo G 2013 One-step synthesis of pH-sensitive poly(Acrylamide-co-Sodium Acrylate) beads with core–shell structure React. Funct. Polym. 73 122

    CAS  Article  Google Scholar 

  5. 5.

    Ali A E-H, Shawky H A, Rehim H A A E and Hegazy E A 2003 Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution Eur. Polym. J. 39 2337

  6. 6.

    Atta A M, Ismail H S, Mohamed H M and Mohamed Z M 2011 Acrylonitrile/Acrylamidoxime/2-Acrylamido-2-Methylpropane Sulfonic Acid-Based Hydrogels: Synthesis, Characterization and Their Application in the Removal of Heavy Metals J. Appl. Polym. Sci. 122 999

    CAS  Article  Google Scholar 

  7. 7.

    Kosemund K, Schlatter H, Ochsenhirt J L, Krause E L, Marsman D S and Erasala G N 2009 Safety Evaluation of Superabsorbent Baby Diapers Regulat. Toxicol. Pharmacol. 53 81

    CAS  Google Scholar 

  8. 8.

    Ozdemir Y and Mazi H pH and Thermo Sensitive Superabsorbent Poly(N-Hydroxymethylacrylamide-co-Itaconic Acid) Hydrogels: Synthesis, Characterization and Kinetic Studies J. Macromol. Sci. Part A 51 983

  9. 9.

    Wang L, Zhang J P and Wang A Q 2008 Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite Colloid Surf. A 322 47

  10. 10.

    Paulino A T, Guilherme M R, Reis A V, Campase G M, Muniz E C and Nozaki J 2006 Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide J. Colloid Interf. Sci. 301 55

    CAS  Article  Google Scholar 

  11. 11.

    Li S, Zhang H, Feng J, Xu R and Liu X 2011 Facile preparation of poly(acrylic acid–acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution Desalination 280 95

  12. 12.

    Dey A, Bera R and Chakrabarty D 2017 Synthesis of poly(ethylene glycol) di-itaconate and investigation of its influence on acrylamide based hydrogels meant for water treatment Polymer 116 178

  13. 13.

    Sadeghi M and Hosseinzadeh H J 2008 Synthesis of Starch—Poly(Sodium Acrylate-co-Acrylamide) Superabsorbent Hydrogel with Salt and pH-Responsiveness Properties as a Drug Delivery System J. Bioact. Compat. Polym. 23 381

    CAS  Article  Google Scholar 

  14. 14.

    Jeong H J, Nam S J, Song J Y and Park S N 2019 Synthesis and physicochemical properties of pH-sensitive hydrogel based on carboxymethyl chitosan/2-hydroxyethyl acrylate for transdermal delivery of nobiletin J. Drug Deliv. Sci. Technol. 51 194

    CAS  Article  Google Scholar 

  15. 15.

    Feng Q, Li F, Yan Q, Zhu Y and Ge C 2010 Frontal polymerization synthesis and drug delivery behavior of thermo-responsive poly(N-isopropylacrylamide) hydrogel Colloid Polym. Sci. 288 915

    CAS  Article  Google Scholar 

  16. 16.

    Ghandehari H, Kopeckova P and Kopecek J 1997 In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds Biomaterials 18 861

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Chen J, Blevins W E, Park H and Park K 2000 Gastric retention properties of superporous hydrogel composites J. Control. Rel. 64 39

    CAS  Article  Google Scholar 

  18. 18.

    Nguyen K T and West J L 2002 Photopolymerizable hydrogels for tissue engineering applications Biomaterials 23 4307

    CAS  PubMed  Google Scholar 

  19. 19.

    Fekete T, Borsa J, Takacs E and Wojnarovits L 2017 Synthesis and characterization of superabsorbent hydrogels based on hydroxyethylcellulose and acrylic acid Carbohyd. Polym. 166 300

    CAS  Google Scholar 

  20. 20.

    Calo E and Khutoryanskiy V V 2015 Biomedical applications of hydrogels: A review of patents and commercial products Eur. Polym. J. 65 252

    CAS  Google Scholar 

  21. 21.

    Nita L E, Chiriac A P, Rusu A G, Bercea M, Ghilan A, Dumitriu R P and Mititelu-Tartau L 2019 New self-healing hydrogels based on reversible physical interactions and their potential applications Eur. Polym. J. 118 176

    CAS  Google Scholar 

  22. 22.

    Chauhan G S, Chauhan S, Chauhan K and Sen U 2006 Synthesis and characterization of acrylamide and 2-hydroxylpropyl methacrylate hydrogels for specialty applications J. Appl. Polym. Sci. 99 3040

    CAS  Article  Google Scholar 

  23. 23.

    Chauhan G S and Chauhan S 2008 Use of novel hydrogels based on modified cellulosics and methacrylamide for separation of metal ions from water systems J. Appl. Polym. Sci. 109 47

    CAS  Article  Google Scholar 

  24. 24.

    Tanaka T 1987 Encyclopedia of Polymer Science and Engineering Vol. 7. (New York: Wiley)

    Google Scholar 

  25. 25.

    Chauhan G S, Lal H and Mahajan S 2004 Synthesis, characterization, and swelling responses of poly(N -isopropylacrylamide)- and hydroxypropyl cellulose-based environmentally sensitive biphasic hydrogels J. Appl. Polym. Sci. 91 479

    CAS  Article  Google Scholar 

  26. 26.

    Mazi H, Kibarer G, Emregul E and Rzaev Z M O 2006 Bioengineering Functional Copolymers. IX. Poly[(maleic anhydride-co-hexene-1)-g-poly(ethylene oxide)] Macromol. Biosci. 6 311

  27. 27.

    Davies M C, Dawkins J V, Hurston D J and Meehan E 2002 Molar mass determination of poly(octadecene-alt-maleic anhydride) copolymers by size exclusion chromatography and dilute solution viscometry Polymer 43 4311

  28. 28.

    Mazi H, Emregül E, Rzaev Z M O and Kibarer G 2006 Preparation and properties of invertase immobilized on a poly(maleic anhydride-hexen-1) membrane J. Biomater. Sci. Polym. Edit. 17 821

    CAS  Article  Google Scholar 

  29. 29.

    Wang Y, Chen D, Wang C, Zhao C, Ma Y and Yang W 2018 Immobilization of cellulase on styrene/maleic anhydride copolymer nanoparticles with improved stability against pH changes Chem. Eng. J. 336 152

    CAS  Google Scholar 

  30. 30.

    Lee S J, Tatavarty R and Gu M B 2012 Electrospun polystyrene–poly(styrene-co-maleic anhydride) nanofiber as a new aptasensor platform Biosens. Bioelectron. 38 302

    CAS  Article  Google Scholar 

  31. 31.

    Derkus B, Emregul K C, Mazi H, Emregul E, Yumak T and Sinag A 2014 Protein A immunosensor for the detection of immunoglobulin G by impedance spectroscopy Bioproc. Biosys. Eng. 37 965

    CAS  Google Scholar 

  32. 32.

    Shafaghi S, Moghadam P N, Fareghi A R and Baradarani M M 2014 Synthesis and Characterization of a Drug-Delivery System Based on Melamine-Modified Poly(vinyl acetate-co-maleic anhydride) Hydrogel J. Appl. Polym. Sci. 131 40389

    Article  CAS  Google Scholar 

  33. 33.

    Shohraty F, Moghadam P N, Fareghi A R, Movagharnezhad N and Khalafy J 2018 Synthesis and Characterization of New pH-Sensitive Hydrogels Based on Poly(glycidyl methacrylate- co -maleic anhydride) Adv. Polym. Technol. 37 120

    CAS  Article  Google Scholar 

  34. 34.

    Chitanu G C, Zaharia L I and Carpov A 1997 International, Review: Analysis and Characterization of Maleic Copolymers J. Polym. Anal. Character. 4 1

    CAS  Article  Google Scholar 

  35. 35.

    Popescu I, Suflet D M, Pelin I M and Chitanu G C 2011 Biomedical Applications Of Maleic Anhydride Copolymers Revue Roumaine de Chimie 56 173

    CAS  Google Scholar 

  36. 36.

    Zhu L P, Yi Z, Liu F, Wei X Z, Zhu B K and Xu Y Y 2008 Amphiphilic graft copolymers based on ultrahigh molecular weight poly(styrene-alt-maleic anhydride) with poly(ethylene glycol) side chains for surface modification of polyethersulfone membranes Eur. Polym. J. 44 1907

    CAS  Google Scholar 

  37. 37.

    Mazi H and Gulpinar A 2014 Cu(II), Zn(II) and Mn(II) complexes of poly(methyl vinyl ether-alt-maleic anhydride). Synthesis, characterization and thermodynamic parameters J. Chem. Sci. 126 239

  38. 38.

    Potorac S, Popa M, Maier V, Lisa G and Verestiuc L 2012 New hydrogels based on maleilated collagen with potential applications in tissue engineering Mater. Sci. Eng. C 32 236

    CAS  Article  Google Scholar 

  39. 39.

    Ilgin P, Ozay H and Ozay O 2019 A new dual stimuli responsive hydrogel: Modeling approaches for the prediction of drug loading and release profile Eur. Polym. J. 113 244

    CAS  Article  Google Scholar 

  40. 40.

    Jafari A, Hassanajili S, Azarpira N, Karimi M B and Geramizadeh B 2019 Development of thermal-crosslinkable chitosan/maleic terminated polyethylene glycol hydrogels for full thickness wound healing: In vitro and in vivo evaluation Eur. Polym. J. 118 113

    CAS  Google Scholar 

  41. 41.

    Wang Y, Yang N, Wang D, He Y, Chen L and Zhao Y 2018 Poly (MAH-β-cyclodextrin-co-NIPAAm) hydrogels with drug hosting and thermo/pH-sensitive for controlled drug release Polym. Degrad. Stabil. 147 123

    CAS  Article  Google Scholar 

  42. 42.

    Bajpai S K 2001 Swelling–deswelling behavior of poly(acrylamide-co-maleic acid) hydrogels J. Appl. Polym. Sci. 80 2782

    CAS  Article  Google Scholar 

  43. 43.

    Kasgoz H, Aydin I and Kasgoz A 2005 The effect of PEG(400)DA crosslinking agent on swelling behaviour of acrylamide-maleic acid hydrogels Polym. Bull. 54 387

    Google Scholar 

  44. 44.

    Tiwari A 2014 Advanced Healthcare Materials (Location: John Wiley and Sons)

    Google Scholar 

  45. 45.

    Li Z and Guan J 2011 Thermosensitive Hydrogels for Drug Delivery Expert Opin. Drug Deliv. 8 991

    CAS  Google Scholar 

  46. 46.

    Koetting M C, Peters J T, Steichen S D and Peppas N A 2015 Stimulus-responsive hydrogels: Theory, modern advances, and applications Mater. Sci. Eng.: R: Rep. 93 1

  47. 47.

    Andrei M, Turturica G, Stanescu P O and Teodorescu M 2016 Thermosensitive injectable hydrogels from poly(N-isopropylacrylamide)–dextran aqueous solutions: Thermogelation and drug release properties Soft Mater. 14 162

  48. 48.

    Li R, Li Y, Wu Y, Zhao Y, Chen H, Yuan Y, Xu K, Zhang H, Lu Y, Wang J, Li X, Jia X and Xiao J 2018 Heparin-Poloxamer Thermosensitive Hydrogel Loaded with bFGF and NGF Enhances Peripheral Nerve Regeneration in Diabetic Rats Biomaterials 168 24

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Ghizal R, Fatima G R and Srivastava S 2014 Smart Polymers and Their Applications, International Journal of Latest Technology in Engineering Manag. Appl. Sci. 2 104

    Google Scholar 

  50. 50.

    Qureshi D, Nayak S K, Maji S, Anis A, Kim D and Pal K 2019 Environment sensitive hydrogels for drug delivery applications Eur. Polym. J. 120 1

    Google Scholar 

  51. 51.

    Lim H L, Hwang Y, Kar M and Varghese S 2014 Smart hydrogels as functional biomimetic systems Biomater. Sci. 2 603

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Wu S, Li H and Chen P 2004 Modeling Investigation of Volume Variation Kinetics of Fast Response Hydrogels J. Macromol. Sci. Part C 44 113

    Article  CAS  Google Scholar 

  53. 53.

    Peppas N A and Franson N M 1983 The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers J. Polym. Sci. Polym. Phys. Edit. 21 983

    CAS  Article  Google Scholar 

  54. 54.

    Ende M T and Peppas N A 1997 Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels II. Diffusion and release studies J. Control. Rel. 48 47

  55. 55.

    Escobar J L, Garcia D M, Valerino A, Zaldivar D, Hernaez E and Katime I 2004 Cephazoline sodium release from poly(N-isopropyl acrylamide-co-N,N-dimethylacrylamide) hydrogels J. Appl. Polym. Sci. 91 3433

    CAS  Article  Google Scholar 

Download references


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information



Corresponding author

Correspondence to HİDAYET MAZİ.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

MAZİ, H., SURMELİHİNDİ, B. Temperature and Ph-sensıtıve Super absorbent Polymers based on Modıfıed Maleıc Anhydrıde. J Chem Sci 133, 10 (2021). https://doi.org/10.1007/s12039-020-01873-3

Download citation


  • Maleic anhydride
  • hydrogel
  • pH
  • temperature
  • super absorbent polymer