Nitrogen-rich compounds: s-triazine and tri-s-triazine derivatives as high energy materials

Abstract

This article describes the syntheses, characterization, and energetic properties of 4, 6-diazido-N, N-dimethyl-1, 3, 5-triazin-2-amine and 2, 4, 6-tris (5-(3, 5-dinitrophenyl)-1H-tetrazol-1-yl)-1, 3, 5-triazine. Also, this paper emphasizes the insensitive and thermally stable energetic molecules like melem, melem-ammonium perchlorate mixture, and hydrazinium cyamelurate. All these compounds possess good energetic properties viz., the heat of formation and heat of combustion.

Graphic abstract

Synthesis and characterizations and energetic properties of 4, 6-diazido-N, N-dimethyl-1, 3, 5-triazin-2-amine (3); 2, 4, 6-tris (5-(3, 5-dinitrophenyl)-1H-tetrazol-1-yl)-1, 3, 5-triazine (4) and hydrazinium cyamelurate (10) are described. The thermal stabilities, energetic properties and sensitivity parameters are compared with standard high-energy materials. (i) Syntheses and characterization of 4, 6-diazido-N, N-dimethyl-1, 3, 5-triazin-2-amine (3); 2, 4, 6-tris (5-(3, 5-dinitrophenyl)-1H-tetrazol-1-yl)-1, 3, 5-triazine (4) and hydrazinium cyamelurate (10) are described. (ii) Experimental energetic properties and sensitivity parameters of these compounds were discussed.

This is a preview of subscription content, access via your institution.

Figure 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

References

  1. 1.

    Venugopalan S 2015 Demystifying Explosives: Concepts in high energy materials (Netherlands: Elsevier)

    Google Scholar 

  2. 2.

    Klapötke T M and Sabate C M 2008 Bistetrazoles: Nitrogen-Rich, High-Performing, Insensitive Energetic Compounds Chem. Mater. 20 3629

    Google Scholar 

  3. 3.

    (a) Tao G, Guo Y, Parrish D and Shreeve J M 2010 Energetic 1,5-diamino-4H-tetrazolium nitro-substituted azolates J. Mater. Chem. 20 2999; (b) Singh R P, Verma R D, Meshri D T and Shreeve J M 2006 Energetic Nitrogen‐Rich Salts and Ionic Liquids Angew. Chem. Int. Ed. 45 3584; (c) Steinhauser G and Klapötke T M 2008 “Green” Pyrotechnics: A Chemists Challenge Angew. Chem. Int. Ed. 47 3330; (d) Chavez D E, Hiskey M A, Naud D L and Parish D 2008 Synthesis of an Energetic Nitrate Ester Angew. Chem. Int. Ed. 47 8307

  4. 4.

    (a) Akhavan J 1998 The Chemistry of Explosives (Cambridge: The Royal Society of Chemistry); (b) Klapötke T M 2007 High Energy materials: Structure and Bonding (Berlin, Heidelberg: Springer) p. 125

  5. 5.

    (a) Nair U R, Asthana S N, Rao A S and Gandhe B R 2010 Advances in High Energy Materials Def. Sci. J. 60 137; (b) Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R and Rao A S 2009 Environmentally Compatible Next Generation Green Energetic Materials (GEMs) J. Hazard. Mater. 161 589

  6. 6.

    Badgujar D M, Talawar M B, Asthana S N and Mahuli Kar P P 2008 Advances in Science and Technology of Modern Energetic Materials: An Overview J. Hazard. Mater. 151 289

    CAS  Article  Google Scholar 

  7. 7.

    Petrie M A, Sheehy J A, Boatz J A, Rasul G, Prakash G K S, Olah G and Christe K O 1997 Novel High-Energy Density Materials. Synthesis and Characterization of Triazidocarbenium Dinitramide, -Perchlorate, and –Tetrafluoroborate J. Am. Chem. Soc. 119 8802

  8. 8.

    (a) Joo Y H and Shreeve J M 2008 1-Substituted 5-Aminotetrazoles: Syntheses from CNN3 with Primary Amines Org. Lett. 10 4665; (b) Steinhauser G, Giester G, Wagner C, Weinberger P, Zachhuber B, Ramer G, Villa M and Lendl B 2012 Nitrogen-rich Compounds of the Actinoids: Dioxouranium(VI) 5,5′-Azobis[tetrazolide] Pentahydrate and Its Unusually Small Uranyl Angle Inorg. Chem. 51 6739

  9. 9.

    Hiskey M A, Goldman N and Stine J R 1998 High-nitrogen energetic materials derived from azotetrazolate J. Energ. Mater. 16 119

    CAS  Article  Google Scholar 

  10. 10.

    (a) Pagoria P F, Lee G S, Mitchell A R and Schmidt R D 2002 A review of energetic materials synthesis Thermochim. Acta 384 187; (b) Talawar M B, Sivabalan R, Anniyappan M, Gore G M, Astana S N and Gandhe B R 2005 Novel Ultra high-Energy Materials Combust. Expl. Shock Waves. 41 264

  11. 11.

    (a) Joo Y H and Shreeve J M 2010 Polynitramino compounds outperform PETN Chem. Commun. 46 142; (b) Hammerl A and Klapötke T M 2002 Tetrazolylpentazoles:  Nitrogen-Rich Compounds Inorg. Chem. 41 906; (c) Srinivas D, Ghule V D and Muralidharan K 2014 Synthesis of nitrogen-rich imidazole, 1,2,4-triazole and tetrazole-based compounds RSC Adv. 4 7041

  12. 12.

    (a) Chavez D E, Hiskey M A and Gilardi R D 2000 3,3′-Azobis(6-amino-1,2,4,5-tetrazine): A Novel High-Nitrogen Energetic Material Angew. Chem. Int. Ed. 39 1791; (b) Gao H and Shreeve J M 2011 Azole-Based Energetic Salts Chem. Rev. 111 7377; (c) Fried L E, Manaa M R, Pagoria P F and Simpson R L 2001 Design and Synthesis of Energetic Materials Annu. Rev. Mater. Res. 31 291

  13. 13.

    Turker L, Atalar T, Gumus S and Camur Y 2009 A DFT study on nitrotriazines J. Hazard. Mater. 167 440

    Article  Google Scholar 

  14. 14.

    (a) Ghule V D, Radhakrishnan S, Jadhav P M and Tewari S P 2012 Computational Study on Substituted s-Triazine Derivatives as Energetic Materials E-J. Chem. 9 583; (b) Klapötke T M and Sabate C M 2009 New energetic compounds based on the nitrogen-rich 5,5′-azotetrazolate anion New J. Chem. 33 1605

    Google Scholar 

  15. 15.

    Guo M 2009 4,5-Bis(1H-tetrazol-5-yl)-1H-imidazole monohydrate Acta. Cryst. E65 o1403

    Google Scholar 

  16. 16.

    (a) Rao M H, Ghule V D and Muralidharan K 2017 2, 4, 6-tris [bis (1H-tetrazol-5-yl) amino]-1, 3, 5-triazine as a nitrogen-rich material J. Chem. Sci. 129 657; (b) Holfter H, Klapötke T M and Schulz A l 1997 High energetic materials: Reaction of Azides with Dioxygenyl Salts Propellants. Explos. Pyrotech. 22 51

  17. 17.

    (a) Abe T, Tao G H, Joo Y H, Huang Y, Twamley B and Shreeve J M 2008 Activation of the C-F Bond: Transformation of CF3N=N- into 5-Azidotetrazoles Angew. Chem. Int. Ed. 47 7087

    CAS  Article  Google Scholar 

  18. 18.

    (a) Christe K O, Haiges R, Wilson W W and Boatz J A 2010 Synthesis and Properties of N7O+ Inorg. Chem. 49 1245; (b) Rao M H and Muralidharan K 2013 Syntheses, characterization and energetic properties of closo-(B 12 H 12) 2− salts of imidazolium derivatives Dalton. Trans. 42 8854; (c) Rao M H and Muralidharan K 2016 closo-Dodecaborate (B12H12)2- salts with nitrogen based cations and their energetic properties Polyhedron 115 105; (d) Ghule V D, Sarangapani R, Jadhav P M and Pande R K 2011 Computational design and structure–property relationship studies on heptazines J. Mol. Model. 17 2927

  19. 19.

    Kolb H C, Finn M G and Sharpless K B 2001 Click Chemistry: Diverse Chemical Function from a Few Good Reactions Angew. Chem. Int. Ed. 40 2004

    CAS  Article  Google Scholar 

  20. 20.

    (a) Deokar P, Vasiliu M, Dixon D A, Christe K O and Haiges R 2016 The Binary Group 4 Azides [PPh4]2[Zr(N3)6] and [PPh4]2[Hf(N3)6] Angew. Chem. Int. Ed. 55 14350; (b) Saal T, Blastik Z E, Haiges R, Nirmalchandar A, Baxter A F, Christe Karl O, Vasiliu M, Dixon D A, Beier P and Sutya Prakash G K 2020 Protonation of CH3N3 and CF3N3 in Superacids: Isolation and Structural Characterization of Long-Lived Methyl- and Trifluoromethylamino Diazonium Ions Angew. Chem. Int. Ed. 59 2

  21. 21.

    Karaghiosoff K, Klapötke T M, Mayer P, Sabate C M, Penger A and Welch J M 2008 Salts of Methylated 5-Aminotetrazoles with Energetic Anions Inorg. Chem. 47 1007

    CAS  Google Scholar 

  22. 22.

    Muralidharan K, Omotowa B A, Twamley B, Piekarski C and Shreeve J M 2005 High energy density materials from azido cyclophosphazenes Chem. Commun. 5193

  23. 23.

    (a) Gao H and Shreeve J M 2011 Azole-Based Energetic Salts Chem. Rev. 111 7377; (b) Srinivas D, Ghule V D, Muralidharan K and Jenkins H D B 2013 Tetraanionic Nitrogen‐Rich Tetrazole‐Based Energetic Salts Chem. Asian J. 8 1023; (c) Huynh M H V, Hiskey M A, Chavez D E, Naud D L and Gilardi R D 2005 Synthesis, Characterization, and Energetic Properties of Diazido Heteroaromatic High-Nitrogen C−N Compound J. Am. Chem. Soc. 127 12537; (d) Banert K, Joo Y H, Ruffer T, Walfort B and Lang H 2007 The Exciting Chemistry of Tetraazidomethane Angew. Chem. Int. Ed. 46 1168; (e) Jenkins H D B, Tudela D and Glasser L 2002 Lattice Potential Energy Estimation for Complex Ionic Salts from Density Measurements Inorg. Chem. 41 2364; (f) Glasser L and Jenkins H D B 2000 Lattice Energies and Unit Cell Volumes of Complex Ionic Solids J. Am. Chem. Soc. 122 632

  24. 24.

    (a) Sorescu D C, Rice B M and Thompson D L 1997 Intermolecular Potential for the Hexahydro-1,3,5-trinitro-1,3,5-s-triazine Crystal (RDX): A Crystal Packing, Monte Carlo, and Molecular Dynamics Study J. Phys. Chem. B 101 798; (b) Kroke E, Schwarz M, Bordon E H, Kroll P, Noll B and Norman A D 2002 Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures New J. Chem. 26 508

  25. 25.

    Anniyappan M, Sonawane S H, Shee S K and Sikder A K 2015 Method of Producing Uniformly Shaped and Sized Particles of 2,4,6-Triazido-1,3,5-triazine by Emulsion Crystallization Cent. Eur. J. Energ. Mat. 12 785

    Google Scholar 

  26. 26.

    Agarwal J P 2010 High Energy Materials (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA) p.19

  27. 27.

    Badgujar D M, Talawar M B, Asthana S N and Mahulikar P P 2008 Advances in science and technology of modern energetic materials: an overview J. Hazard. Mater. 161 289

    Article  Google Scholar 

  28. 28.

    Frisch M J et al. 2003 Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA

  29. 29.

    (a) Ghule V D 2012 Computational Studies on Energetic Properties of Trinitro-Substituted Imidazole–Triazole and Pyrazole–Triazole Derivatives J. Phys. Chem. A 116 9391; (b) Deswal S, Ghule V D, Tittal R K and Radhakrishnan S 2015 Quantum-chemical design of tetrazolo [1, 5-b][1, 2, 4, 5] tetrazine based nitrogen-rich energetic materials Comput. Theor. Chem. 1054 55; (c) Jadhav P M, Radhakrishnan S, Ghule V D and Pandey R K 2015 Energetic salts from nitroformate ion J. Mol. Model 21 134

Download references

Acknowledgements

Authors thank ACRHEM, the University of Hyderabad for financial support. Authors also thank the School of Chemistry, the University of Hyderabad for infrastructure facilities. Authors also thank K. Sathish Kumar for his help in single-crystal X-ray diffraction studies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krishnamurthi Muralidharan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 225 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanumantha Rao, M., Ghule, V.D. & Muralidharan, K. Nitrogen-rich compounds: s-triazine and tri-s-triazine derivatives as high energy materials. J Chem Sci 133, 13 (2021). https://doi.org/10.1007/s12039-020-01865-3

Download citation

Keywords

  • s-triazines
  • tri-s-triazines
  • 3+2 cyclo additions
  • high energy materials
  • nitrogen-rich compounds